To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the automorphism group of Drinfeld’s half-space over a finite field is the projective linear group of the underlying vector space. The proof of this result uses analytic geometry in the sense of Berkovich over the finite field equipped with the trivial valuation. We also take into account extensions of the base field.
We consider the analogue of the André–Oort conjecture for Drinfeld modular varieties which was formulated by Breuer. We prove this analogue for special points with separable reflex field over the base field by adapting methods which were used by Klingler and Yafaev to prove the André–Oort conjecture under the generalized Riemann hypothesis in the classical case. Our result extends results of Breuer showing the correctness of the analogue for special points lying in a curve and for special points having a certain behaviour at a fixed set of primes.
We describe a probability distribution on isomorphism classes of principally quasi-polarized $p$-divisible groups over a finite field $k$ of characteristic $p$ which can reasonably be thought of as a ‘uniform distribution’, and we compute the distribution of various statistics ($p$-corank, $a$-number, etc.) of $p$-divisible groups drawn from this distribution. It is then natural to ask to what extent the $p$-divisible groups attached to a randomly chosen hyperelliptic curve (respectively, curve; respectively, abelian variety) over $k$ are uniformly distributed in this sense. This heuristic is analogous to conjectures of Cohen–Lenstra type for $\text{char~} k\not = p$, in which case the random $p$-divisible group is defined by a random matrix recording the action of Frobenius. Extensive numerical investigation reveals some cases of agreement with the heuristic and some interesting discrepancies. For example, plane curves over ${\mathbf{F} }_{3} $ appear substantially less likely to be ordinary than hyperelliptic curves over ${\mathbf{F} }_{3} $.
We show that transcendental elements of the Brauer group of an algebraic surface can obstruct the Hasse principle. We construct a general $K 3$ surface $X$ of degree $2$ over $ \mathbb{Q} $, together with a 2-torsion Brauer class $\alpha $ that is unramified at every finite prime, but ramifies at real points of $X$. With motivation from Hodge theory, the pair $(X, \alpha )$ is constructed from a double cover of ${ \mathbb{P} }^{2} \times { \mathbb{P} }^{2} $ ramified over a hypersurface of bidegree $(2, 2)$.
In his Tata Lecture Notes, Igusa conjectured the validity of a strong uniformity in the decay of complete exponential sums modulo powers of a prime number and determined by a homogeneous polynomial. This was proved for non-degenerate forms by Denef–Sperber and then by Cluckers for weighted homogeneous non-degenerate forms. In a recent preprint, Wright has proved this for degenerate binary forms. We give a different proof of Wright’s result that seems to be simpler and relies upon basic estimates for exponential sums mod $p$as well as a type of resolution of singularities with good reduction in the sense of Denef.
We exhibit seven linear codes exceeding the current best known minimum distance $d$ for their dimension $k$ and block length $n$. Each code is defined over ${ \mathbb{F} }_{8} $, and their invariants $[n, k, d] $ are given by $[49, 13, 27] $, $[49, 14, 26] $, $[49, 16, 24] $, $[49, 17, 23] $, $[49, 19, 21] $, $[49, 25, 16] $ and $[49, 26, 15] $. Our method includes an exhaustive search of all monomial evaluation codes generated by points in the $[0, 5] \times [0, 5] $ lattice square.
In this work, we set up a theory of p-adic modular forms over Shimura curves over totally real fields which allows us to consider also non-integral weights. In particular, we define an analogue of the sheaves of kth invariant differentials over the Shimura curves we are interested in, for any p-adic character. In this way, we are able to introduce the notion of overconvergent modular form of any p-adic weight. Moreover, our sheaves can be put in p-adic families over a suitable rigid analytic space, that parametrizes the weights. Finally, we define Hecke operators, including the U operator, that acts compactly on the space of overconvergent modular forms. We also construct the eigencurve.
We compute the center of the ring of PD differential operators on a smooth variety over ℤ/pnℤ, confirming a conjecture of Kaledin (private communication). More generally, given an associative algebra A0 over ℤp and its flat deformation An over ℤ/pn+1ℤ, we prove that under a certain non-degeneracy condition, the center of An is isomorphic to the ring of length-(n+1) Witt vectors over the center of A0.
Given $f(x,y)\in \mathbb Z[x,y]$ with no common components with $x^a-y^b$ and $x^ay^b-1$, we prove that for $p$ sufficiently large, with $C(f)$ exceptions, the solutions $(x,y)\in \overline {\mathbb F}_p\times \overline {\mathbb F}_p$ of $f(x,y)=0$ satisfy $ {\rm ord}(x)+{\rm ord}(y)\gt c (\log p/\log \log p)^{1/2},$ where $c$ is a constant and ${\rm ord}(r)$ is the order of $r$ in the multiplicative group $\overline {\mathbb F}_p^*$. Moreover, for most $p\lt N$, $N$ being a large number, we prove that, with $C(f)$ exceptions, ${\rm ord}(x)+{\rm ord}(y)\gt p^{1/4+\epsilon (p)},$ where $\epsilon (p)$ is an arbitrary function tending to $0$ when $p$ goes to $\infty $.
We consider stacks of filtered $\varphi $-modules over rigid analytic spaces and adic spaces. We show that these modules parameterize $p$-adic Galois representations of the absolute Galois group of a $p$-adic field with varying coefficients over an open substack containing all classical points. Further, we study a period morphism (defined by Pappas and Rapoport) from a stack parameterizing integral data, and determine the image of this morphism.
From power series expansions of functions on curves over finite fields, one can obtain sequences with perfect or almost perfect linear complexity profile. It has been suggested by various authors to use such sequences as key streams for stream ciphers. In this work, we show how long parts of such sequences can be computed efficiently from short ones. Such sequences should therefore be considered to be cryptographically weak. Our attack leads in a natural way to a new measure of the complexity of sequences which we call expansion complexity.
For an abelian surface A over a number field k, we study the limiting distribution of the normalized Euler factors of the L-function of A. This distribution is expected to correspond to taking characteristic polynomials of a uniform random matrix in some closed subgroup of USp(4); this Sato–Tate group may be obtained from the Galois action on any Tate module of A. We show that the Sato–Tate group is limited to a particular list of 55 groups up to conjugacy. We then classify A according to the Galois module structure on the ℝ-algebra generated by endomorphisms of (the Galois type), and establish a matching with the classification of Sato–Tate groups; this shows that there are at most 52 groups up to conjugacy which occur as Sato–Tate groups for suitable A and k, of which 34 can occur for k=ℚ. Finally, we present examples of Jacobians of hyperelliptic curves exhibiting each Galois type (over ℚ whenever possible), and observe numerical agreement with the expected Sato–Tate distribution by comparing moment statistics.
We prove that the Brauer–Manin obstruction is the only obstruction to the existence of integral points on affine varieties over global fields of positive characteristic $p$. More precisely, we show that the only obstructions come from étale covers of exponent $p$ or, alternatively, from flat covers coming from torsors under connected group schemes of exponent $p$.
The tempered fundamental group of a p-adic variety classifies analytic étale covers that become topological covers for Berkovich topology after pullback by some finite étale cover. This paper constructs cospecialization homomorphisms between the (p′) versions of the tempered fundamental group of the fibers of a smooth morphism with polystable reduction. We study the question for families of curves in another paper. To construct them, we will start by describing the pro-(p′) tempered fundamental group of a smooth and proper variety with polystable reduction in terms of the reduction endowed with its log structure, thus defining tempered fundamental groups for log polystable varieties.
Let χ be the primitive Dirichlet character of conductor 49 defined by χ(3)=ζ for ζ a primitive 42nd root of unity. We explicitly compute the slopes of the U7 operator acting on the space of overconvergent modular forms on X1(49) with weight k and character χ7k−6 or χ8−7k, depending on the embedding of ℚ(ζ)into ℂ7. By applying results of Coleman and of Cohen and Oesterlé, we are then able to deduce the slopes of U7 acting on all classical Hecke newforms of the same weight and character.
We study the equation a2−2b6=cp and its specialization a2−2=cp, where p is a prime, using the modular method. In particular, we use a ℚ-curve defined over for which the solution (a,b,c)=(±1,±1,−1) gives rise to a CM-form. This allows us to apply the modular method to resolve the equation a2−2b6=cp for p in certain congruence classes. For the specialization a2−2=cp, we use the multi-Frey technique of Siksek to obtain further refined results.
We define and study a Lefschetz operator on the equivariant cohomology complex of the Drinfeld and Lubin–Tate towers. For ℓ-adic coefficients we show how this operator induces a geometric realization of the Langlands correspondence composed with the Zelevinski involution for elliptic representations. Combined with our previous study of the monodromy operator, this suggests a possible extension of Arthur’s philosophy for unitary representations occurring in the intersection cohomology of Shimura varieties to the possibly non-unitary representations occurring in the cohomology of Rapoport–Zink spaces. However, our motivation for studying the Lefschetz operator comes from the hope that its geometric nature will enable us to realize the mod-ℓLanglands correspondence due to Vignéras. We discuss this problem and propose a conjecture.
We describe an algorithm to prove the Birch and Swinnerton-Dyer conjectural formula for any given elliptic curve defined over the rational numbers of analytic rank zero or one. With computer assistance we rigorously prove the formula for 16714 of the 16725 such curves of conductor less than 5000.
According to the André–Oort conjecture, an algebraic curve in Y (1)n that is not equal to a special subvariety contains only finitely many points which correspond to ann-tuple of elliptic curves with complex multiplication. Pink’s conjecture generalizes the André–Oort conjecture to the extent that if the curve is not contained in a special subvariety of positive codimension, then it is expected to meet the union of all special subvarieties of codimension two in only finitely many points. We prove this for a large class of curves in Y (1)n. When restricting to special subvarieties of codimension two that are not strongly special we obtain finiteness for all curves defined over . Finally, we formulate and prove a variant of the Mordell–Lang conjecture for subvarieties of Y (1)n.
Let X be an algebraic variety and let f:X−−→X be a rational self-map with a fixed point q, where everything is defined over a number field K. We make some general remarks concerning the possibility of using the behaviour of f near q to produce many rational points on X. As an application, we give a simplified proof of the potential density of rational points on the variety of lines of a cubic fourfold, originally proved by Claire Voisin and the first author in 2007.