To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a family of mixed Tate motives over $\mathbb{Z}$ whose periods are linear forms in the zeta values $\unicode[STIX]{x1D701}(n)$. They naturally include the Beukers–Rhin–Viola integrals for $\unicode[STIX]{x1D701}(2)$ and the Ball–Rivoal linear forms in odd zeta values. We give a general integral formula for the coefficients of the linear forms and a geometric interpretation of the vanishing of the coefficients of a given parity. The main underlying result is a geometric construction of a minimal ind-object in the category of mixed Tate motives over $\mathbb{Z}$ which contains all the non-trivial extensions between simple objects. In a joint appendix with Don Zagier, we prove the compatibility between the structure of the motives considered here and the representations of their periods as sums of series.
Let $K$ be an algebraic number field. A cuboid is said to be $K$-rational if its edges and face diagonals lie in $K$. A $K$-rational cuboid is said to be perfect if its body diagonal lies in $K$. The existence of perfect $\mathbb{Q}$-rational cuboids is an unsolved problem. We prove here that there are infinitely many distinct cubic fields $K$ such that a perfect $K$-rational cuboid exists; and that, for every integer $n\geq 2$, there is an algebraic number field $K$ of degree $n$ such that there exists a perfect $K$-rational cuboid.
We correct some statements and proofs of K. S. Kedlaya [Local and global structure of connections on nonarchimedean curves, Compos. Math. 151 (2015), 1096–1156]. To summarize, Proposition 1.1.2 is false as written, and we provide here a corrected statement and proof (and a corresponding modification of Remark 1.1.3); the proofs of Theorem 2.3.17 and Theorem 3.8.16, which rely on Proposition 1.1.2, are corrected accordingly; some missing details in the proofs of Theorem 3.4.20 and Theorem 3.4.22 are filled in; and a few much more minor corrections are recorded.
We show that a genus $2$ curve over a number field whose jacobian has complex multiplication will usually have stable bad reduction at some prime. We prove this by computing the Faltings height of the jacobian in two different ways. First, we use a known case of the Colmez conjecture, due to Colmez and Obus, that is valid when the CM field is an abelian extension of the rationals. It links the height and the logarithmic derivatives of an $L$-function. The second formula involves a decomposition of the height into local terms based on a hyperelliptic model. We use the reduction theory of genus $2$ curves as developed by Igusa, Liu, Saito, and Ueno to relate the contribution at the finite places with the stable bad reduction of the curve. The subconvexity bounds by Michel and Venkatesh together with an equidistribution result of Zhang are used to bound the infinite places.
In this article we show that the quotient ${\mathcal{M}}_{\infty }/B(\mathbb{Q}_{p})$ of the Lubin–Tate space at infinite level ${\mathcal{M}}_{\infty }$ by the Borel subgroup of upper triangular matrices $B(\mathbb{Q}_{p})\subset \operatorname{GL}_{2}(\mathbb{Q}_{p})$ exists as a perfectoid space. As an application we show that Scholze’s functor $H_{\acute{\text{e}}\text{t}}^{i}(\mathbb{P}_{\mathbb{C}_{p}}^{1},{\mathcal{F}}_{\unicode[STIX]{x1D70B}})$ is concentrated in degree one whenever $\unicode[STIX]{x1D70B}$ is an irreducible principal series representation or a twist of the Steinberg representation of $\operatorname{GL}_{2}(\mathbb{Q}_{p})$.
Deninger et Werner ont développé un analogue pour les courbes $p$-adiques de la correspondance classique de Narasimhan et Seshadri entre les fibrés vectoriels stables de degré $0$ et les représentations unitaires du groupe fondamental topologique pour une courbe complexe propre et lisse. Par transport parallèle, ils ont associé fonctoriellement à chaque fibré vectoriel sur une courbe $p$-adique, dont la réduction est fortement semi-stable de degré $0$, une représentation $p$-adique du groupe fondamental de la courbe. Ils se sont posé quelques questions : leur foncteur est-il pleinement fidèle ? La cohomologie des systèmes locaux fournis par celui-ci admet-elle une filtration de Hodge-Tate ? Leur construction est-elle compatible avec la correspondance de Simpson $p$-adique développée par Faltings ? Nous répondons à ces questions dans cet article.
We consider mod $p$ Hilbert modular forms associated to a totally real field of degree $d$ in which $p$ is unramified. We prove that every such form arises by multiplication by partial Hasse invariants from one whose weight (a $d$-tuple of integers) lies in a certain cone contained in the set of non-negative weights, answering a question of Andreatta and Goren. The proof is based on properties of the Goren–Oort stratification on mod $p$ Hilbert modular varieties established by Goren and Oort, and Tian and Xiao.
Let $X$ be an irreducible complex-analytic variety, ${\mathcal{S}}$ a stratification of $X$ and ${\mathcal{F}}$ a holomorphic vector bundle on the open stratum ${X\unicode[STIX]{x0030A}}$. We give geometric conditions on ${\mathcal{S}}$ and ${\mathcal{F}}$ that produce a natural lift of the Chern class $\operatorname{c}_{k}({\mathcal{F}})\in H^{2k}({X\unicode[STIX]{x0030A}};\mathbb{C})$ to $H^{2k}(X;\mathbb{C})$, which, in the algebraic setting, is of Hodge level ${\geqslant}k$. When applied to the Baily–Borel compactification $X$ of a locally symmetric variety ${X\unicode[STIX]{x0030A}}$ and an automorphic vector bundle ${\mathcal{F}}$ on ${X\unicode[STIX]{x0030A}}$, this refines a theorem of Goresky–Pardon. In passing we define a class of simplicial resolutions of the Baily–Borel compactification that can be used to define its mixed Hodge structure. We use this to show that the stable cohomology of the Satake ($=$ Baily–Borel) compactification of ${\mathcal{A}}_{g}$ contains nontrivial Tate extensions.
In a previous article, we proved that Shimura curves have no points rational over number fields under a certain assumption. In this article, we give another criterion of the nonexistence of rational points on Shimura curves and obtain new counterexamples to the Hasse principle for Shimura curves. We also prove that such counterexamples obtained from the above results are accounted for by the Manin obstruction.
After the work of Kisin, there is a good theory of canonical integral models of Shimura varieties of Hodge type at primes of good reduction. The first part of this paper develops a theory of Hodge type Rapoport–Zink formal schemes, which uniformize certain formal completions of such integral models. In the second part, the general theory is applied to the special case of Shimura varieties associated with groups of spinor similitudes, and the reduced scheme underlying the Rapoport–Zink space is determined explicitly.
We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.
Let $M$ be the Shimura variety associated to the group of spinor similitudes of a quadratic space over $\mathbb{Q}$ of signature $(n,2)$. We prove a conjecture of Bruinier and Yang, relating the arithmetic intersection multiplicities of special divisors and complex multiplication points on $M$ to the central derivatives of certain $L$-functions. Each such $L$-function is the Rankin–Selberg convolution associated with a cusp form of half-integral weight $n/2+1$, and the weight $n/2$ theta series of a positive definite quadratic space of rank $n$. When $n=1$ the Shimura variety $M$ is a classical quaternionic Shimura curve, and our result is a variant of the Gross–Zagier theorem on heights of Heegner points.
Building on recent work of Bhargava, Elkies and Schnidman and of Kriz and Li, we produce infinitely many smooth cubic surfaces defined over the field of rational numbers that contain rational points.
A strong quantitative form of Manin’s conjecture is established for a certain variety in biprojective space. The singular integral in an application of the circle method involves the third power of the integral sine function and is evaluated in closed form.
We determine the Galois representations inside the $\ell$-adic cohomology of some quaternionic and related unitary Shimura varieties at ramified places. The main results generalize the previous works of Reimann and Kottwitz in this setting to arbitrary levels at $p$, and confirm the expected description of the cohomology due to Langlands and Kottwitz.
We determine the Galois representations inside the $\ell$-adic cohomology of some unitary Shimura varieties at split places where they admit uniformization by finite products of Drinfeld upper half spaces. Our main results confirm Langlands–Kottwitz’s description of the cohomology of Shimura varieties in new cases.
We use Lau’s classification of 2-divisible groups using Dieudonné displays to construct integral canonical models for Shimura varieties of abelian type at 2-adic places where the level is hyperspecial.
We extend the group-theoretic construction of local models of Pappas and Zhu [Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math. 194 (2013), 147–254] to the case of groups obtained by Weil restriction along a possibly wildly ramified extension. This completes the construction of local models for all reductive groups when $p\geqslant 5$. We show that the local models are normal with special fiber reduced and study the monodromy action on the sheaves of nearby cycles. As a consequence, we prove a conjecture of Kottwitz that the semi-simple trace of Frobenius gives a central function in the parahoric Hecke algebra. We also introduce a notion of splitting model and use this to study the inertial action in the case of an unramified group.
Consider a system of polynomials in many variables over the ring of integers of a number field $K$. We prove an asymptotic formula for the number of integral zeros of this system in homogeneously expanding boxes. As a consequence, any smooth and geometrically integral variety $X\subseteq \mathbb{P}_{K}^{m}$ satisfies the Hasse principle, weak approximation, and the Manin–Peyre conjecture if only its dimension is large enough compared to its degree. This generalizes work of Skinner, who considered the case where all polynomials have the same degree, and recent work of Browning and Heath-Brown, who considered the case where $K=\mathbb{Q}$. Our main tool is Skinner’s number field version of the Hardy–Littlewood circle method. As a by-product, we point out and correct an error in Skinner’s treatment of the singular integral.