To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The second author has recently introduced a new class of $L$-series in the arithmetic theory of function fields over finite fields. We show that the values at one of these $L$-series encode arithmetic information of a generalization of Drinfeld modules defined over Tate algebras that we introduce (the coefficients can be chosen in a Tate algebra). This enables us to generalize Anderson’s log-algebraicity theorem and an analogue of the Herbrand–Ribet theorem recently obtained by Taelman.
Consider an elliptic curve defined over an imaginary quadratic field K with good reduction at the primes above p ≥ 5 and with complex multiplication by the full ring of integers of K. In this paper, we construct p-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then prove p-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.
We prove an analog of the Yomdin–Gromov lemma for $p$-adic definable sets and more broadly in a non-Archimedean definable context. This analog keeps track of piecewise approximation by Taylor polynomials, a nontrivial aspect in the totally disconnected case. We apply this result to bound the number of rational points of bounded height on the transcendental part of $p$-adic subanalytic sets, and to bound the dimension of the set of complex polynomials of bounded degree lying on an algebraic variety defined over $\mathbb{C}(\!(t)\!)$, in analogy to results by Pila and Wilkie, and by Bombieri and Pila, respectively. Along the way we prove, for definable functions in a general context of non-Archimedean geometry, that local Lipschitz continuity implies piecewise global Lipschitz continuity.
We give upper and lower bounds for the number of rational points on Prym varieties over finite fields. Moreover, we determine the exact maximum and minimum number of rational points on Prym varieties of dimension 2.
For $n=2$ the statement in the title is a theorem of B. Poonen (2009). He uses a one-parameter family of varieties together with a theorem of Coray, Sansuc and one of the authors (1980), on the Brauer–Manin obstruction for rational points on these varieties. For $n=p$, $p$ any prime number, A. Várilly-Alvarado and B. Viray (2012) considered analogous families of varieties. Replacing this family by its $(2p+1)$th symmetric power, we prove the statement in the title using a theorem on the Brauer–Manin obstruction for rational points on such symmetric powers. The latter theorem is based on work of one of the authors with Swinnerton-Dyer (1994) and with Skorobogatov and Swinnerton-Dyer (1998), work generalising results of Salberger (1988).
We determine the set of connected components of minuscule affine Deligne–Lusztig varieties for hyperspecial maximal compact subgroups of unramified connected reductive groups. Partial results are also obtained for non-minuscule closed affine Deligne–Lusztig varieties. We consider both the function field case and its analog in mixed characteristic. In particular, we determine the set of connected components of unramified Rapoport–Zink spaces.
We consider a certain family of Kudla–Rapoport cycles on an integral model of a Shimura variety attached to a unitary group of signature (1, 1), and prove that the arithmetic degrees of these cycles are Fourier coefficients of the central derivative of an Eisenstein series of genus 2. The integral model in question parameterizes abelian surfaces equipped with a non-principal polarization and an action of an imaginary quadratic number ring, and in this setting the cycles are degenerate: they may contain components of positive dimension. This result can be viewed as confirmation, in the degenerate setting and for dimension 2, of conjectures of Kudla and Kudla–Rapoport that predict relations between the intersection numbers of special cycles and the Fourier coefficients of automorphic forms.
We construct an Euler system attached to a weight 2 modular form twisted by a Grössencharacter of an imaginary quadratic field $K$, and apply this to bounding Selmer groups.
The Coleman integral is a $p$-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [J. Symbolic Comput. 47 (2012) no. 1, 89–101], we extend the Coleman integration algorithms in Balakrishnan et al. [Algorithmic number theory, Lecture Notes in Computer Science 6197 (Springer, 2010) 16–31] and Balakrishnan [ANTS-X: Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Series 1 (Mathematical Sciences Publishers, 2013) 41–61] to even-degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.
We find defining equations for the Shimura curve of discriminant 15 over $\mathbb{Z}[1/15]$. We then determine the graded ring of automorphic forms over the 2-adic integers, as well as the higher cohomology. We apply this to calculate the homotopy groups of a spectrum of ‘topological automorphic forms’ associated to this curve, as well as one associated to a quotient by an Atkin–Lehner involution.
Assuming the Tate conjecture and the computability of étale cohomology with finite coefficients, we give an algorithm that computes the Néron–Severi group of any smooth projective geometrically integral variety, and also the rank of the group of numerical equivalence classes of codimension $p$ cycles for any $p$.
We study the problem of efficiently constructing a curve $C$ of genus $2$ over a finite field $\mathbb{F}$ for which either the curve $C$ itself or its Jacobian has a prescribed number $N$ of $\mathbb{F}$-rational points.
In the case of the Jacobian, we show that any ‘CM-construction’ to produce the required genus-$2$ curves necessarily takes time exponential in the size of its input.
On the other hand, we provide an algorithm for producing a genus-$2$ curve with a given number of points that, heuristically, takes polynomial time for most input values. We illustrate the practical applicability of this algorithm by constructing a genus-$2$ curve having exactly $10^{2014}+9703$ (prime) points, and two genus-$2$ curves each having exactly $10^{2013}$ points.
In an appendix we provide a complete parametrization, over an arbitrary base field $k$ of characteristic neither two nor three, of the family of genus-$2$ curves over $k$ that have $k$-rational degree-$3$ maps to elliptic curves, including formulas for the genus-$2$ curves, the associated elliptic curves, and the degree-$3$ maps.
We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field $\mathbb{Q}$ of rational numbers. These curves are the nearby fibers of the semi-universal deformation of a simple singularity of type $E_{6}$. We show that average size of the 2-Selmer sets of these curves is finite (if it exists). We use this to show that a positive proposition of these curves (when ordered by height) has integral points everywhere locally, but no integral points globally.
Consider a vector bundle with connection on a $p$-adic analytic curve in the sense of Berkovich. We collect some improvements and refinements of recent results on the structure of such connections, and on the convergence of local horizontal sections. This builds on work from the author’s 2010 book and on subsequent improvements by Baldassarri and by Poineau and Pulita. One key result exclusive to this paper is that the convergence polygon of a connection is locally constant around every type 4 point.
We consider the distribution of $p$-power group schemes among the torsion of abelian varieties over finite fields of characteristic $p$, as follows. Fix natural numbers $g$ and $n$, and let ${\it\xi}$ be a non-supersingular principally quasipolarized Barsotti–Tate group of level $n$. We classify the $\mathbb{F}_{q}$-rational forms ${\it\xi}^{{\it\alpha}}$ of ${\it\xi}$. Among all principally polarized abelian varieties $X/\mathbb{F}_{q}$ of dimension $g$ with $X[p^{n}]_{\bar{\mathbb{F}}_{q}}\cong {\it\xi}_{\bar{\mathbb{F}}_{q}}$, we compute the frequency with which $X[p^{n}]\cong {\it\xi}^{{\it\alpha}}$. The error in our estimate is bounded by $D/\sqrt{q}$, where $D$ depends on $g$, $n$, and $p$, but not on ${\it\xi}$.
We prove the integral Tate conjecture for cycles of codimension $2$ on smooth cubic fourfolds over an algebraic closure of a field finitely generated over its prime subfield and of characteristic different from $2$ or $3$. The proof relies on the Tate conjecture with rational coefficients, proved in that setting by the first author, and on an argument of Voisin coming from complex geometry.
We consider two families of arithmetic divisors defined on integral models of Shimura curves. The first was studied by Kudla, Rapoport and Yang, who proved that if one assembles these divisors in a formal generating series, one obtains the $q$-expansion of a modular form of weight 3/2. The present work concerns the Shimura lift of this modular form: we identify the Shimura lift with a generating series comprising divisors arising in the recent work of Kudla and Rapoport regarding cycles on Shimura varieties of unitary type. In the prequel to this paper, the author considered the geometry of the two families of cycles. These results are combined with the Archimedean calculations found in this work in order to establish the theorem. In particular, we obtain new examples of modular generating series whose coefficients lie in arithmetic Chow groups of Shimura varieties.
Schinzel’s Hypothesis (H) was used by Colliot-Thélène and Sansuc, and later by Serre, Swinnerton-Dyer and others, to prove that the Brauer–Manin obstruction controls the Hasse principle and weak approximation on pencils of conics and similar varieties. We show that when the ground field is $\mathbb{Q}$ and the degenerate geometric fibres of the pencil are all defined over $\mathbb{Q}$, one can use this method to obtain unconditional results by replacing Hypothesis (H) with the finite complexity case of the generalised Hardy–Littlewood conjecture recently established by Green, Tao and Ziegler.
We prove arithmetic Hilbert–Samuel type theorems for semi-positive singular hermitian line bundles of finite height. This includes the log-singular metrics of Burgos–Kramer–Kühn. The results apply in particular to line bundles of modular forms on some non-compact Shimura varieties. As an example, we treat the case of Hilbert modular surfaces, establishing an arithmetic analogue of the classical result expressing the dimensions of spaces of cusp forms in terms of special values of Dedekind zeta functions.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathcal{O}$ be a maximal order in the quaternion algebra $B_p$ over $\mathbb{Q}$ ramified at $p$ and $\infty $. The paper is about the computational problem: construct a supersingular elliptic curve $E$ over $\mathbb{F}_p$ such that ${\rm End}(E) \cong \mathcal{O}$. We present an algorithm that solves this problem by taking gcds of the reductions modulo $p$ of Hilbert class polynomials.
New theoretical results are required to determine the complexity of our algorithm. Our main result is that, under certain conditions on a rank three sublattice $\mathcal{O}^T$ of $\mathcal{O}$, the order $\mathcal{O}$ is effectively characterized by the three successive minima and two other short vectors of $\mathcal{O}^T\! .$ The desired conditions turn out to hold whenever the $j$-invariant $j(E)$, of the elliptic curve with ${\rm End}(E) \cong \mathcal{O}$, lies in $\mathbb{F}_p$. We can then prove that our algorithm terminates with running time $O(p^{1+\varepsilon })$ under the aforementioned conditions.
As a further application we present an algorithm to simultaneously match all maximal order types with their associated $j$-invariants. Our algorithm has running time $O(p^{2.5 + \varepsilon })$ operations and is more efficient than Cerviño’s algorithm for the same problem.