Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:43:48.602Z Has data issue: false hasContentIssue false

Le complémentaire des puissances $n$-ièmes dans un corps de nombres est un ensemble diophantien

Published online by Cambridge University Press:  22 June 2015

Jean-Louis Colliot-Thélène
Affiliation:
CNRS & Université Paris-Sud, Mathématiques, Bâtiment 425, F-91405 Orsay Cedex, France email jlct@math.u-psud.fr
Jan Van Geel
Affiliation:
Universiteit Gent, Vakgroep Wiskunde, Krijgslaan 281, S22, B-9000 Gent, Belgium email jvg@cage.ugent.be

Abstract

For $n=2$ the statement in the title is a theorem of B. Poonen (2009). He uses a one-parameter family of varieties together with a theorem of Coray, Sansuc and one of the authors (1980), on the Brauer–Manin obstruction for rational points on these varieties. For $n=p$, $p$ any prime number, A. Várilly-Alvarado and B. Viray (2012) considered analogous families of varieties. Replacing this family by its $(2p+1)$th symmetric power, we prove the statement in the title using a theorem on the Brauer–Manin obstruction for rational points on such symmetric powers. The latter theorem is based on work of one of the authors with Swinnerton-Dyer (1994) and with Skorobogatov and Swinnerton-Dyer (1998), work generalising results of Salberger (1988).

Samenvatting

Voor $n=2$ is de bewering in de titel een stelling van B. Poonen (2009). Hij gebruikt een één-parameter familie van variëteiten, en een stelling van Coray, Sansuc en één van de auteurs (1980), over de Brauer–Manin obstructie voor de rationale punten van deze variëteiten. Voor $n=p$, $p$ een willekeurig priemgetal, beschouwden A. Várilly-Alvarado en B. Viray (2012) een analoge familie van variëteiten. We bewijzen de bewering in de titel door deze familie te vervangen door de $(2p+1)$-de symmetrische macht ervan en door een stelling over de Brauer–Manin obstructie voor de rationale punten van zulke symmetrische machten toe te passen. Deze stelling steunt op werk van één van de auteurs met Swinnerton-Dyer (1994) en met Skorobogatov en Swinnerton-Dyer (1998). Dat werk veralgemeent resultaten van Salberger (1988).

Type
Research Article
Copyright
© The Authors 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artin, M., Left ideals in maximal orders, in Brauer groups in ring theory and algebraic geometry, Lecture Notes in Mathematics, vol. 917 (Springer, Berlin, 1982), 182193.CrossRefGoogle Scholar
Colliot-Thélène, J.-L., Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps p-adique, Invent. math. 159 (2005), 589606.CrossRefGoogle Scholar
Colliot-Thélène, J.-L. and Coray, D., L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques, Compositio Math. 39 (1979), 301322.Google Scholar
Colliot-Thélène, J.-L., Coray, D. and Sansuc, J.-J., Descente et principe de Hasse pour certaines variétés rationnelles, J. reine angew. Math. 320 (1980), 150191.Google Scholar
Colliot-Thélène, J.-L., Sansuc, J.-J. and Swinnerton-Dyer, Sir Peter, Intersections of two quadrics and Châtelet surfaces, I, II, J. reine angew. Math. 373 (1987), 37107; 374 (1987) 72–168.Google Scholar
Colliot-Thélène, J.-L. and Swinnerton-Dyer, Sir Peter, Hasse principle and weak approximation for pencils of Severi–Brauer and similar varieties, J. reine angew. Math. 453 (1994), 49112.Google Scholar
Colliot-Thélène, J.-L., Skorobogatov, A. N. and Swinnerton-Dyer, Sir Peter, Rational points and zero-cycles on fibred varieties : Schinzel’s hypothesis and Salberger’s device, J. reine angew. Math. 495 (1998), 128.CrossRefGoogle Scholar
Frossard, E., Fibres dégénérées des schémas de Severi–Brauer d’ordres, J. Algebra 198 (1997), 362387.CrossRefGoogle Scholar
Gille, P. and Szamuely, T., Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101 (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
Harari, D., Méthode des fibrations et obstruction de Manin, Duke Math. J. 75 (1994), 221260.CrossRefGoogle Scholar
Königsmann, J., Defining $\mathbb{Z}$in $\mathbb{Q}$, Preprint (2013), arXiv:1011.3424v2 [math.NT].Google Scholar
Poonen, B., The set of nonsquares in a number field is Diophantine, Math. Res. Lett. 16(1) (2009), 165170; version corrigée: http://www-math.mit.edu/∼poonen/papers/nonsquares.pdf.CrossRefGoogle Scholar
Poonen, B., Existence of rational points on smooth projective varieties, J. Eur. Math. Soc. 11 (2009), 529543.CrossRefGoogle Scholar
Salberger, P., Class groups of orders and Chow groups of their Brauer–Severi schemes, in K-theory of orders and their Brauer–Severi schemes, Thèse, Chalmers University of Technology, Göteborg (1985).Google Scholar
Salberger, P., Zero-cycles on rational surfaces over number fields, Invent. math. 91(3) (1988), 505524.CrossRefGoogle Scholar
Van den Bergh, M. and Van Geel, J., Algebraic elements in division algebras over function fields of curves, Israel J. Math. 52 (1985), 3345.CrossRefGoogle Scholar
Várilly-Alvarado, A. and Viray, B., Higher dimensional analogues of Châtelet surfaces, Bull. London Math. Soc. 44(1) (2012), 125135.CrossRefGoogle Scholar
Várilly-Alvarado, A. and Viray, B., Smooth compactifications of certain normic bundles, European J. Math., to appear. http://math.rice.edu/∼av15/files/compactifications.pdf.Google Scholar
Witt, E., Riemann–Rochscher Satz und Z-Funktion im Hyperkomplexen, Math. Ann. 110 (1934), 1228.CrossRefGoogle Scholar
Wittenberg, O., Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque, Duke Math. J. 161 (2012), 21132166.CrossRefGoogle Scholar