We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While rigorous unconditional bounds on B are known, we present the first rigorous bound on Brun’s constant under the assumption of GRH, yielding $B < 2.1594$.
We provide numerical evidence towards three conjectures on harmonic numbers by Eswarathasan, Levine and Boyd. Let $J_p$ denote the set of integers $n\geq 1$ such that the harmonic number $H_n$ is divisible by a prime p. The conjectures state that: (i) $J_p$ is always finite and of the order $O(p^2(\log \log p)^{2+\epsilon })$; (ii) the set of primes for which $J_p$ is minimal (called harmonic primes) has density $e^{-1}$ among all primes; (iii) no harmonic number is divisible by $p^4$. We prove parts (i) and (iii) for all $p\leq 16843$ with at most one exception, and enumerate harmonic primes up to $50\times 10^5$, finding a proportion close to the expected density. Our work extends previous computations by Boyd by a factor of approximately $30$ and $50$, respectively.
Let $g(x)=x^3+ax^2+bx+c$ and $f(x)=g(x^3)$ be irreducible polynomials with rational coefficients, and let $ {\mathrm{Gal}}(f)$ be the Galois group of $f(x)$ over $\mathbb {Q}$. We show $ {\mathrm{Gal}}(f)$ is one of 11 possible transitive subgroups of $S_9$, defined up to conjugacy; we use $ {\mathrm{Disc}}(f)$, $ {\mathrm{Disc}}(g)$ and two additional low-degree resolvent polynomials to identify $ {\mathrm{Gal}}(f)$. We further show how our method can be used for determining one-parameter families for a given group. Also included is a related algorithm that, given a field $L/\mathbb {Q}$, determines when L can be defined by an irreducible polynomial of the form $g(x^3)$ and constructs such a polynomial when it exists.
We compute primes $p \equiv 5 \bmod 8$ up to $10^{11}$ for which the Pellian equation $x^2-py^2=-4$ has no solutions in odd integers; these are the members of sequence A130229 in the Online Encyclopedia of Integer Sequences. We find that the number of such primes $p\leqslant x$ is well approximated by
Let $\mathbb {F}$ be a field and $(s_0,\ldots ,s_{n-1})$ be a finite sequence of elements of $\mathbb {F}$. In an earlier paper [G. H. Norton, ‘On the annihilator ideal of an inverse form’, J. Appl. Algebra Engrg. Comm. Comput.28 (2017), 31–78], we used the $\mathbb {F}[x,z]$ submodule $\mathbb {F}[x^{-1},z^{-1}]$ of Macaulay’s inverse system $\mathbb {F}[[x^{-1},z^{-1}]]$ (where z is our homogenising variable) to construct generating forms for the (homogeneous) annihilator ideal of $(s_0,\ldots ,s_{n-1})$. We also gave an $\mathcal {O}(n^2)$ algorithm to compute a special pair of generating forms of such an annihilator ideal. Here we apply this approach to the sequence r of the title. We obtain special forms generating the annihilator ideal for $(r_0,\ldots ,r_{n-1})$ without polynomial multiplication or division, so that the algorithm becomes linear. In particular, we obtain its linear complexities. We also give additional applications of this approach.
Let $m,\,r\in {\mathbb {Z}}$ and $\omega \in {\mathbb {R}}$ satisfy $0\leqslant r\leqslant m$ and $\omega \geqslant 1$. Our main result is a generalized continued fraction for an expression involving the partial binomial sum $s_m(r) = \sum _{i=0}^r\binom{m}{i}$. We apply this to create new upper and lower bounds for $s_m(r)$ and thus for $g_{\omega,m}(r)=\omega ^{-r}s_m(r)$. We also bound an integer $r_0 \in \{0,\,1,\,\ldots,\,m\}$ such that $g_{\omega,m}(0)<\cdots < g_{\omega,m}(r_0-1)\leqslant g_{\omega,m}(r_0)$ and $g_{\omega,m}(r_0)>\cdots >g_{\omega,m}(m)$. For real $\omega \geqslant \sqrt 3$ we prove that $r_0\in \{\lfloor \frac {m+2}{\omega +1}\rfloor,\,\lfloor \frac {m+2}{\omega +1}\rfloor +1\}$, and also $r_0 =\lfloor \frac {m+2}{\omega +1}\rfloor$ for $\omega \in \{3,\,4,\,\ldots \}$ or $\omega =2$ and $3\nmid m$.
Let ${\mathbb {Z}}_{K}$ denote the ring of algebraic integers of an algebraic number field $K = {\mathbb Q}(\theta )$, where $\theta $ is a root of a monic irreducible polynomial $f(x) = x^n + a(bx+c)^m \in {\mathbb {Z}}[x]$, $1\leq m<n$. We say $f(x)$ is monogenic if $\{1, \theta , \ldots , \theta ^{n-1}\}$ is a basis for ${\mathbb {Z}}_K$. We give necessary and sufficient conditions involving only $a, b, c, m, n$ for $f(x)$ to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup ${\mathbb {Z}}[\theta ]$ in ${\mathbb {Z}}_K$. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group $S_n$, the symmetric group on n letters.
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
We provide explicit bounds for the Riemann zeta-function on the line $\mathrm {Re}\,{s}=1$, assuming that the Riemann hypothesis holds up to height T. In particular, we improve some bounds in finite regions for the logarithmic derivative and the reciprocal of the Riemann zeta-function.
We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.
Let F be a subfield of the complex numbers and $f(x)=x^6+ax^5+bx^4+cx^3+bx^2+ax+1 \in F[x]$ an irreducible polynomial. We give an elementary characterisation of the Galois group of $f(x)$ as a transitive subgroup of $S_6$. The method involves determining whether three expressions involving a, b and c are perfect squares in F and whether a related quartic polynomial has a linear factor. As an application, we produce one-parameter families of reciprocal sextic polynomials with a specified Galois group.
We investigate a novel geometric Iwasawa theory for
${\mathbf Z}_p$
-extensions of function fields over a perfect field k of characteristic
$p>0$
by replacing the usual study of p-torsion in class groups with the study of p-torsion class group schemes. That is, if
$\cdots \to X_2 \to X_1 \to X_0$
is the tower of curves over k associated with a
${\mathbf Z}_p$
-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of the p-torsion group scheme in the Jacobian of
$X_n$
as
$n\rightarrow \infty $
. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of
$X_n$
equipped with natural actions of Frobenius and of the Cartier operator V. We formulate and test a number of conjectures which predict striking regularity in the
$k[V]$
-module structure of the space
$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$
of global regular differential forms as
$n\rightarrow \infty .$
For example, for each tower in a basic class of
${\mathbf Z}_p$
-towers, we conjecture that the dimension of the kernel of
$V^r$
on
$M_n$
is given by
$a_r p^{2n} + \lambda _r n + c_r(n)$
for all n sufficiently large, where
$a_r, \lambda _r$
are rational constants and
$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$
is a periodic function, depending on r and the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on
${\mathbf Z}_p$
-towers of curves, and we prove our conjectures in the case
$p=2$
and
$r=1$
.
Let K be a number field, let A be a finite-dimensional K-algebra, let
$\operatorname {\mathrm {J}}(A)$
denote the Jacobson radical of A and let
$\Lambda $
be an
$\mathcal {O}_{K}$
-order in A. Suppose that each simple component of the semisimple K-algebra
$A/{\operatorname {\mathrm {J}}(A)}$
is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two
$\Lambda $
-lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism
$X \rightarrow Y$
. This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices
$A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$
, determine whether A and B are similar over
$\mathcal {O}_{K}$
, and if so, return a matrix
$C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$
such that
$B= CAC^{-1}$
. We give explicit examples that show that the implementation of the latter algorithm for
$\mathcal {O}_{K}=\mathbb {Z}$
vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.
By analogy with the trace of an algebraic integer
$\alpha $
with conjugates
$\alpha _1=\alpha , \ldots , \alpha _d$
, we define the G-measure
$ {\mathrm {G}} (\alpha )= \sum _{i=1}^d ( |\alpha _i| + 1/ | \alpha _i | )$
and the absolute
${\mathrm G}$
-measure
${\mathrm {g}}(\alpha )={\mathrm {G}}(\alpha )/d$
. We establish an analogue of the Schur–Siegel–Smyth trace problem for totally positive algebraic integers. Then we consider the case where
$\alpha $
has all its conjugates in a sector
$| \arg z | \leq \theta $
,
$0 < \theta < 90^{\circ }$
. We compute the greatest lower bound
$c(\theta )$
of the absolute G-measure of
$\alpha $
, for
$\alpha $
belonging to
$11$
consecutive subintervals of
$]0, 90 [$
. This phenomenon appears here for the first time, conforming to a conjecture of Rhin and Smyth on the nature of the function
$c(\theta )$
. All computations are done by the method of explicit auxiliary functions.
Let
$\alpha $
be a totally positive algebraic integer of degree d, with conjugates
$\alpha _1=\alpha , \alpha _2, \ldots , \alpha _d$
. The absolute
$S_k$
-measure of
$\alpha $
is defined by
$s_k(\alpha )= d^{-1} \sum _{i=1}^{d}\alpha _i^k$
. We compute the lower bounds
$\upsilon _k$
of
$s_k(\alpha )$
for each integer in the range
$2\leq k \leq 15$
and give a conjecture on the results for integers
$k>15$
. Then we derive the lower bounds of
$s_k(\alpha )$
for all real numbers
$k>2$
. Our computation is based on an improvement in the application of the LLL algorithm and analysis of the polynomials in the explicit auxiliary functions.
When $p$ is an odd prime, Delbourgo observed that any Kubota–Leopoldt $p$-adic $L$-function, when multiplied by an auxiliary Euler factor, can be written as an infinite sum. We shall establish such expressions without restriction on $p$, and without the Euler factor when the character is non-trivial, by computing the periods of appropriate measures. As an application, we will reprove the Ferrero–Greenberg formula for the derivative $L_p'(0,\chi )$. We will also discuss the convergence of sum expressions in terms of elementary $p$-adic analysis, as well as their relation to Stickelberger elements; such discussions in turn give alternative proofs of the validity of sum expressions.