To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider variational properties of some numerical invariants, measuring convergence of local horizontal sections, associated to differential modules on polyannuli over a nonarchimedean field of characteristic 0. This extends prior work in the one-dimensional case of Christol, Dwork, Robba, Young, et al. Our results do not require positive residue characteristic; thus besides their relevance to the study of Swan conductors for isocrystals, they are germane to the formal classification of flat meromorphic connections on complex manifolds.
Let K be a local field of equal characteristic p>2, let XK/K be a smooth proper relative curve, and let ℱ be a rank 1 smooth l-adic sheaf (l≠p) on a dense open subset UK⊂XK. In this paper, under some assumptions on the wild ramification of ℱ, we prove a conductor formula that computes the Swan conductor of the etale cohomology of the vanishing cycles of ℱ. Our conductor formula is a generalization of the conductor formula of Bloch, but for non-constant coefficients.
In the predecessor to this article, we used global equidistribution theorems to prove that given a correspondence between a modular curve and an elliptic curve A, the intersection of any finite-rank subgroup of A with the set of CM-points of A is finite. In this article we apply local methods, involving the theory of arithmetic differential equations, to prove quantitative versions of a similar statement. The new methods apply also to certain infinite-rank subgroups, as well as to the situation where the set of CM-points is replaced by certain isogeny classes of points on the modular curve. Finally, we prove Shimura-curve analogues of these results.
We continue our study of the reduction of PEL Shimura varieties with parahoric level structure at primes p at which the group defining the Shimura variety ramifies. We describe ‘good’ p-adic integral models of these Shimura varieties and study their étale local structure. In the present paper we mainly concentrate on the case of unitary groups for a ramified quadratic extension. Some of our results are applications of the theory of twisted affine flag varieties that we developed in a previous paper.
An integer may be represented by a quadratic form over each ring of p-adic integers and over the reals without being represented by this quadratic form over the integers. More generally, such failure of a local-global principle may occur for the representation of one integral quadratic form by another integral quadratic form. We show that many such examples may be accounted for by a Brauer–Manin obstruction for the existence of integral points on schemes defined over the integers. For several types of homogeneous spaces of linear algebraic groups, this obstruction is shown to be the only obstruction to the existence of integral points.
Kudla has proposed a general program to relate arithmetic intersection multiplicities of special cycles on Shimura varieties to Fourier coefficients of Eisenstein series. The lowest dimensional case, in which one intersects two codimension one cycles on the integral model of a Shimura curve, has been completed by Kudla, Rapoport and Yang. In the present paper we prove results in a higher dimensional setting. On the integral model of a Shimura surface we consider the intersection of a Shimura curve with a codimension two cycle of complex multiplication points, and relate the intersection to certain cycle classes constructed by Kudla, Rapoport and Yang. As a corollary we deduce that our intersection multiplicities appear as Fourier coefficients of a Hilbert modular form of half-integral weight.
Desingularized fiber products of semi-stable elliptic surfaces with Hetale3=0 are classified. Such varieties may play a role in the study of supersingular threefolds, of the deformation theory of varieties with trivial canonical bundle, and of arithmetic degenerations of rigid Calabi–Yau threefolds.
Let and be modular forms of half-integral weight k+1/2 and integral weight 2k respectively that are associated to each other under the Shimura–Kohnen correspondence. For suitable fundamental discriminants D, a theorem of Waldspurger relates the coefficient c(D) to the central critical value L(f,D,k) of the Hecke L-series of f twisted by the quadratic Dirichlet character of conductor D. This paper establishes a similar kind of relationship for central critical derivatives in the special case k=1, where f is of weight 2. The role of c(D) in our main theorem is played by the first derivative in the weight direction of the Dth Fourier coefficient of a p-adic family of half-integral weight modular forms. This family arises naturally, and is related under the Shimura correspondence to the Hida family interpolating f in weight 2. The proof of our main theorem rests on a variant of the Gross–Kohnen–Zagier formula for Stark–Heegner points attached to real quadratic fields, which may be of some independent interest. We also formulate a more general conjectural formula of Gross–Kohnen–Zagier type for Stark–Heegner points, and present numerical evidence for it in settings that seem inaccessible to our methods of proof based on p-adic deformations of modular forms.
We construct general type surfaces in mixed characteristic whose geometric genera can be made to jump by an arbitrarily prescribed positive amount under specialization. We then show that this phenomenon of jumping geometric genus presents itself in some compact Shimura surfaces. Finally, we find a set of conditions, met by the latter Shimura surfaces, that forces the higher plurigenera to remain constant in reduction modulo p.
Let k be a non-Archimedean field, let X be a k-affinoid space and let f1,…,fn, with , be analytic functions over X. If X is irreducible, we prove that the analytic domain is still irreducible, provided that is small enough. Then, for a general X, we precisely describe how the geometric connected components of the spaces behave with regards to ε. Finally, we obtain a result concerning privileged neighbourhoods and adapt a theorem from complex analytic geometry about Noetherianity for germs of analytic functions.
Let X ⊂ ℙN be a geometrically integral cubic hypersurface defined over ℚ, with singular locus of dimension at most dim X − 4. The main result in this paper is a proof of the fact that X(ℚ) contains OɛX (BdimX + ɛ) points of height at most B.
Let k be a complete, non-Archimedean valued field (the trivial absolute value is allowed) and let φ:X→Y be a morphism between two Berkovich k-analytic spaces; we show that, for any integer n, the set of points of X at which the local dimension of φ is at least equal to n is a Zariski-closed subset of X. In order to establish it, we first prove an analytic analogue of Zariski’s Main Theorem, and we also introduce, and study, the notion of an analytic system of parameters at a point.
In the complex domain, one can integrate (solve) holomorphic ordinary differential equations (ODEs) near a non-singular point. We study the existence of solutions in the case of a positive characteristic base field k which is complete with respect to a non-Archimedean absolute value. ODEs are substituted by modules over a ring of analytic functions endowed with an action of all differential operators. The monodromy groups associated to the corresponding category are computed.
For d, n positive integers, let α(d, n) be the statement “For every abelian variety A bounded by d there exists a point P of order n”. Let l1, l2, l3, … be the sequence of prime numbers and let α be
Let K be a finitely generated field over its prime field. Then for almost all e-tuples σ = (σ1, …, σe) of elements of the abstract Galois group G(K) of K and for all elliptic curves E defined over the following results hold.