Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T12:08:43.915Z Has data issue: false hasContentIssue false

Desingularized fiber products of semi-stable elliptic surfaces with vanishing third Betti number

Published online by Cambridge University Press:  01 January 2009

Chad Schoen*
Affiliation:
Department of Mathematics, Duke University, Box 90320, Durham, NC 27708-0320, USA (email: schoen@math.duke.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Desingularized fiber products of semi-stable elliptic surfaces with Hetale3=0 are classified. Such varieties may play a role in the study of supersingular threefolds, of the deformation theory of varieties with trivial canonical bundle, and of arithmetic degenerations of rigid Calabi–Yau threefolds.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Artin, M., Algebraization of formal moduli, I. Global analysis (Papers in honor of K. Kodaira) (University of Tokyo Press, Tokyo, 1969), 2171.Google Scholar
[2]Artin, M., The implicit function theorem in algebraic geometry, in International Colloquim on Algebraic geometry (Tata Institute of Fundamental Research, Bombay, 1968) (Oxford University Press, London, 1969), 1334.Google Scholar
[3]Artin, M., Algebraization of formal moduli, II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88135.CrossRefGoogle Scholar
[4]Artin, M., Théorèms de représentabilité pour les espaces algébriques (Presses de l’université de Montréal, Montréal, 1973).Google Scholar
[5]Beauville, A., Le nombre minimum de fibres singulières d’une courbe stable sur , in Séminaire sur les pinceaux de courbes de genre au moins deux, Astérisque, vol. 86, ed. L. Szpiro (Société Mathématique de France, Paris, 1981), 97108.Google Scholar
[6]Beauville, A., Les familles stables de courbes elliptiques sur admettant quatre fibres singulières, C. R. Acad. Sci. Paris, Sér. I 294 (1982), 657660.Google Scholar
[7]Deligne, P., La conjecture de Weil: II, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252.CrossRefGoogle Scholar
[8]Ekedahl, T., On non-liftable Calabi Yau threefolds, Preprint (2004), arXiv:math.AG/0306435 v2.Google Scholar
[9]Faltings, G., Schappacher, N., Wüstholz, G., et al. Rational points, third enlarged edition (Max-Planck-Institut für Mathematik, Bonn, 1992).CrossRefGoogle Scholar
[10]Grothendieck, A. and Dieudonné, J. A., Eléments de Géometrie Algébriques I, Grundlehren der Mathematischen Wissenschaften, Band 166 (Springer, Berlin, 1971).Google Scholar
[11]Grothendieck, A., Revêtements étales et groupe fondamental (SGA I), Lecture Notes in Mathematics, vol. 224 (Springer, Berlin, 1971).CrossRefGoogle Scholar
[12]Hartshorne, R., Algebraic geometry (Springer, New York, 1977).CrossRefGoogle Scholar
[13]Hirokado, M., A non-liftable Calabi–Yau threefold in characteristic 3, Tohoku Math. J. 51 (1999), 479487.CrossRefGoogle Scholar
[14]Hirokado, M., Calabi–Yau threefolds obtained as fiber products of elliptic and quasi-elliptic rational surfaces, J. Pure Appl. Algebra 162 (2001), 251271.CrossRefGoogle Scholar
[15]Ito, H., On unirationality of extremal elliptic surfaces, Math. Ann. 310 (1998), 717733.CrossRefGoogle Scholar
[16]Ito, H., On extremal elliptic surfaces in characteristic 2 and 3, Hiroshima Math. J. 32 (2002), 179188.CrossRefGoogle Scholar
[17]Katz, N., Moments, monodromy, and perversity: a diophantine perspective (Princeton University Press, Princeton, NJ, 2005).Google Scholar
[18]Kleiman, S., Relative duality for quasi-coherent sheaves, Compositio Math. 41 (1980), 3960.Google Scholar
[19]Knutson, D., Algebraic spaces, Lecture Notes in Mathematics, vol. 203 (Springer, Berlin, 1971).CrossRefGoogle Scholar
[20]Lang, W., Extremal rational elliptic surfaces in characteristic p. I: Beauville surfaces, Math. Z. 207 (1991), 429437.CrossRefGoogle Scholar
[21]Lewis, J., A survey of the Hodge conjecture (Les publications CRM, Montreal, 1991).Google Scholar
[22]Liu, Q., Algebraic geometry and arithmetic curves (Oxford Univeristy Press, Oxford, 2002).CrossRefGoogle Scholar
[23]Milne, J., Étale cohomology (Princeton University Press, Princeton, NJ, 1980).Google Scholar
[24]Miranda, R. and Persson, U., On extremal rational elliptic surfaces, Math. Z. 193 (1986), 537558.CrossRefGoogle Scholar
[25]Moisezon, B., On n-dimensional compact varieties with n algebraically independent meromorphic functions. I, II, III, Amer. Math. Soc. Transl, Ser. 2 63 (1967), 51177.Google Scholar
[26]Rudakov, A. N. and Safarevic, I. R., Supersingular K3 surfaces over fields of characteristic 2, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 848869.Google Scholar
[27]Schoen, C., On fiber products of rational elliptic surfaces with section, Math. Z. 197 (1988), 177199.CrossRefGoogle Scholar
[28]Schoen, C., Torsion in the cohomology of fiber products of elliptic surfaces, Preprint (2002).Google Scholar
[29]Schoen, C., Complex varieties for which the Chow group mod n is not finite, J. Algebraic Geom. 11 (2002), 41100.CrossRefGoogle Scholar
[30]Schoen, C., Invariants of certain normal crossing surfaces, in preparation.Google Scholar
[31]Schröer, S., Some Calabi–Yau threefolds with obstructed deformations over the Witt vectors, Composito Math. 140 (2004), 15791592.CrossRefGoogle Scholar
[32]Schütt, M., New examples of modular rigid Calabi–Yau threefolds, Collect. Math. 55 (2004), 219228.Google Scholar
[33]Schweizer, A., Extremal elliptic surfaces in characteristic 2 and 3, Manuscripta Math. 102 (2000), 505521.CrossRefGoogle Scholar
[34]Sernesi, E., Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, vol. 334 (Springer, New York, 2006).Google Scholar
[35]Shioda, T., On unirationality of supersingular surfaces, Math. Ann. 225 (1977), 155159.CrossRefGoogle Scholar
[36]Silverman, J., The arithmetic of elliptic curves (Springer, New York, 1986).CrossRefGoogle Scholar
[37]Silverman, J., Advanced topics in the arithmetic of elliptic curves (Springer, New York, 1994).CrossRefGoogle Scholar