To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main goal of this paper is to deduce (from a recent resolution of singularities result of Gabber) the following fact: (effective) Chow motives with ℤ[1/p]-coefficients over a perfect field k of characteristic p generate the category DMeffgm[1/p] (of effective geometric Voevodsky’s motives with ℤ[1/p]-coefficients). It follows that DMeffgm[1/p] can be endowed with a Chow weight structure wChow whose heart is Choweff[1/p] (weight structures were introduced in a preceding paper, where the existence of wChow for DMeffgmℚ was also proved). As shown in previous papers, this statement immediately yields the existence of a conservative weight complex functor DMeffgm[1/p]→Kb (Choweff [1/p])(which induces an isomorphism on K0-groups), as well as the existence of canonical and functorial (Chow)-weight spectral sequences and weight filtrations for any cohomology theory on DMeffgm[1/p] . We also mention a certain Chow t-structure for DMeff−[1/p]and relate it with unramified cohomology.
We associate to certain filtrations of a graded linear series of a big line bundle a concave function on its Okounkov body, whose law with respect to the Lebesgue measure describes the asymptotic distribution of the jumps of the filtration. As a consequence, we obtain a Fujita-type approximation theorem in this general filtered setting. We then specialize these results to the filtrations by minima in the usual context of Arakelov geometry (and for more general adelically normed graded linear series), thereby obtaining in a simple way a natural construction of an arithmetic Okounkov body, the existence of the arithmetic volume as a limit and an arithmetic Fujita approximation theorem for adelically normed graded linear series. We also obtain an easy proof of the existence of the sectional capacity previously obtained by Lau, Rumely and Varley.
We prove that an algebraic subvariety of a Shimura variety is weakly special if and only if analytic components of its preimage in the symmetric space are algebraic. We also prove an analogous result in the case of abelian varieties.
Let E/ℚ be an elliptic curve and let D<0 be a sufficiently large fundamental discriminant. If contains Heegner points of discriminant D, those points generate a subgroup of rank at least |D|δ, where δ>0 is an absolute constant. This result is compatible with the Birch and Swinnerton-Dyer conjecture.
Following some remarks made by O'Grady and Oguiso, the potential density of rational points on the second punctual Hilbert scheme of certain K3 surfaces is proved.
We study the elliptic curve discrete logarithm problem over finite extension fields. We show that for any sequences of prime powers (qi)i∈ℕ and natural numbers (ni)i∈ℕ with ni⟶∞ and ni/log (qi)⟶0 for i⟶∞, the elliptic curve discrete logarithm problem restricted to curves over the fields 𝔽qnii can be solved in subexponential expected time (qnii)o(1). We also show that there exists a sequence of prime powers (qi)i∈ℕ such that the problem restricted to curves over 𝔽qi can be solved in an expected time of e𝒪(log (qi)2/3).
We discuss the Mordell–Weil sieve as a general technique for proving results concerning rational points on a given curve. In the special case of curves of genus 2, we describe quite explicitly how the relevant local information can be obtained if one does not want to restrict to mod p information at primes of good reduction. We describe our implementation of the Mordell–Weil sieve algorithm and discuss its efficiency.
Let f1,…,fg∈ℂ(z) be rational functions, let Φ=(f1,…,fg) denote their coordinate-wise action on (ℙ1)g, let V ⊂(ℙ1)g be a proper subvariety, and let P be a point in (ℙ1)g(ℂ). We show that if 𝒮={n≥0:Φn(P)∈V (ℂ)} does not contain any infinite arithmetic progressions, then 𝒮 must be a very sparse set of integers. In particular, for any k and any sufficiently large N, the number of n≤N such that Φn(P)∈V (ℂ) is less than log kN, where log k denotes the kth iterate of the logfunction. This result can be interpreted as an analogue of the gap principle of Davenport–Roth and Mumford.
For a closed d-dimensional subvariety X of an abelian variety A and a canonically metrized line bundle L on A, Chambert-Loir has introduced measures c1(L∣X)∧d on the Berkovich analytic space associated to A with respect to the discrete valuation of the ground field. In this paper, we give an explicit description of these canonical measures in terms of convex geometry. We use a generalization of the tropicalization related to the Raynaud extension of A and Mumford’s construction. The results have applications to the equidistribution of small points.
We determine the real counting function N(q) (q∈[1,∞)) for the hypothetical ‘curve’ over 𝔽1, whose corresponding zeta function is the complete Riemann zeta function. We show that such a counting function exists as a distribution, is positive on (1,∞) and takes the value −∞ at q=1 as expected from the infinite genus of C. Then, we develop a theory of functorial 𝔽1-schemes which reconciles the previous attempts by Soulé and Deitmar. Our construction fits with the geometry of monoids of Kato, is no longer limited to toric varieties and it covers the case of schemes associated with Chevalley groups. Finally we show, using the monoid of adèle classes over an arbitrary global field, how to apply our functorial theory of -schemes to interpret conceptually the spectral realization of zeros of L-functions.
We discuss the problem of constructing elements of multiplicative high order in finite fields of large degree over their prime field. We obtain such elements by evaluating rational functions on elliptic curves, at points whose order is small with respect to their degree. We discuss several special cases, including an old construction of Wiedemann, giving the first nontrivial estimate for the order of the elements in this construction.
We generalise results of Buzzard, Taylor and Kassaei on analytic continuation of p-adic overconvergent eigenforms over ℚ to the case of p-adic overconvergent Hilbert eigenforms over totally real fields F, under the assumption that p splits completely in F. This includes weight-one forms and has applications to generalisations of Buzzard and Taylor’s main theorem. Next, we follow an idea of Kassaei’s to generalise Coleman’s well-known result that ‘an overconvergent Up-eigenform of small slope is classical’ to the case of p-adic overconvergent Hilbert eigenforms of Iwahori level.
In Boyer [Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties, Invent. Math. 177 (2009), 239–280 (in French)], a sheaf version of the monodromy-weight conjecture for some unitary Shimura varieties was proved by giving explicitly the monodromy filtration of the complex of vanishing cycles in terms of local systems introduced in Harris and Taylor [The geometry and cohomology of some simple Shimura varieties (Princeton University Press, Princeton, NJ, 2001)]. The main result of this paper is the cohomological version of the monodromy-weight conjecture for these Shimura varieties, which we prove by means of an explicit description of the groups of cohomology in terms of automorphic representations and the local Langlands correspondence.
We study the fluctuations in the distribution of zeros of zeta functions of a family of hyperelliptic curves defined over a fixed finite field, in the limit of large genus. According to the Riemann hypothesis for curves, the zeros all lie on a circle. Their angles are uniformly distributed, so for a curve of genus g a fixed interval ℐ will contain asymptotically 2g∣ℐ∣ angles as the genus grows. We show that for the variance of number of angles in ℐ is asymptotically (2/π2)log (2g∣ℐ∣) and prove a central limit theorem: the normalized fluctuations are Gaussian. These results continue to hold for shrinking intervals as long as the expected number of angles 2g∣ℐ∣ tends to infinity.
We show an arithmetic generalization of the recent work of Lazarsfeld–Mustaţǎ which uses Okounkov bodies to study linear series of line bundles. As applications, we derive a log-concavity inequality on volumes of arithmetic line bundles and an arithmetic Fujita approximation theorem for big line bundles.
We prove the parity conjecture for the ranks of p-power Selmer groups (p⁄=2) of a large class of elliptic curves defined over totally real number fields.
In a recent paper, Bondarko [Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), Preprint (2007), 0704.4003] defined the notion of weight structure, and proved that the category DMgm(k)of geometrical motives over a perfect field k, as defined and studied by Voevodsky, Suslin and Friedlander [Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000)], is canonically equipped with such a structure. Building on this result, and under a condition on the weights avoided by the boundary motive [J. Wildeshaus, The boundary motive: definition and basic properties, Compositio Math. 142 (2006), 631–656], we describe a method to construct intrinsically in DMgm(k)a motivic version of interior cohomology of smooth, but possibly non-projective schemes. In a sequel to this work [J. Wildeshaus, On the interior motive of certain Shimura varieties: the case of Hilbert–Blumenthal varieties, Preprint (2009), 0906.4239], this method will be applied to Shimura varieties.
For the p-adic Galois representation associated to a Hilbert modular form, Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a finite place not dividing p is compatible with the local Langlands correspondence. Under the same assumption, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also prove that the monodromy-weight conjecture holds for such representations.
We investigate the special fibres of Siegel modular varieties with Iwahori level structure. On these spaces, we have the Newton stratification, and the Kottwitz–Rapoport (KR) stratification; one would like to understand how these stratifications are related to each other. We give a simple description of all KR strata which are entirely contained in the supersingular locus as disjoint unions of Deligne–Lusztig varieties. We also give an explicit numerical description of the KR stratification in terms of abelian varieties.
On Shimura varieties of orthogonal type over totally real fields, we prove a product formula and the modularity of Kudla’s generating series of special cycles in Chow groups.