To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $F$ be a totally real field in which a prime $p$ is unramified. We define the Goren–Oort stratification of the characteristic-$p$ fiber of a quaternionic Shimura variety of maximal level at $p$. We show that each stratum is a $(\mathbb{P}^{1})^{r}$-bundle over other quaternionic Shimura varieties (for an appropriate integer $r$). As an application, we give a necessary condition for the ampleness of a modular line bundle on a quaternionic Shimura variety in characteristic $p$.
Fuchsian groups with a modular embedding have the richest arithmetic properties among non-arithmetic Fuchsian groups. But they are very rare, all known examples being related either to triangle groups or to Teichmüller curves. In Part I of this paper we study the arithmetic properties of the modular embedding and develop from scratch a theory of twisted modular forms for Fuchsian groups with a modular embedding, proving dimension formulas, coefficient growth estimates and differential equations. In Part II we provide a modular proof for an Apéry-like integrality statement for solutions of Picard–Fuchs equations. We illustrate the theory on a worked example, giving explicit Fourier expansions of twisted modular forms and the equation of a Teichmüller curve in a Hilbert modular surface. In Part III we show that genus two Teichmüller curves are cut out in Hilbert modular surfaces by a product of theta derivatives. We rederive most of the known properties of those Teichmüller curves from this viewpoint, without using the theory of flat surfaces. As a consequence we give the modular embeddings for all genus two Teichmüller curves and prove that the Fourier developments of their twisted modular forms are algebraic up to one transcendental scaling constant. Moreover, we prove that Bainbridge’s compactification of Hilbert modular surfaces is toroidal. The strategy to compactify can be expressed using continued fractions and resembles Hirzebruch’s in form, but every detail is different.
We study the automorphisms of the nonsplit Cartan modular curves $X_{\text{ns}}(p)$ of prime level $p$. We prove that if $p\geqslant 29$ all the automorphisms preserve the cusps. Furthermore, if $p\equiv 1~\text{mod}~12$ and $p\neq 13$, the automorphism group is generated by the modular involution given by the normalizer of a nonsplit Cartan subgroup of $\text{GL}_{2}(\mathbb{F}_{p})$. We also prove that for every $p\geqslant 29$ the existence of an exceptional rational automorphism would give rise to an exceptional rational point on the modular curve $X_{\text{ns}}^{+}(p)$ associated to the normalizer of a nonsplit Cartan subgroup of $\text{GL}_{2}(\mathbb{F}_{p})$.
We introduce an algorithm that can be used to compute the canonical height of a point on an elliptic curve over the rationals in quasi-linear time. As in most previous algorithms, we decompose the difference between the canonical and the naive height into an archimedean and a non-archimedean term. Our main contribution is an algorithm for the computation of the non-archimedean term that requires no integer factorization and runs in quasi-linear time.
In this article, we propose to use the character theory of compact Lie groups and their orthogonality relations for the study of Frobenius distribution and Sato–Tate groups. The results show the advantages of this new approach in several aspects. With samples of Frobenius ranging in size much smaller than the moment statistic approach, we obtain very good approximation to the expected values of these orthogonality relations, which give useful information about the underlying Sato–Tate groups and strong evidence of the correctness of the generalized Sato–Tate conjecture. In fact, $2^{10}$ to $2^{12}$ points provide satisfactory convergence. Even for $g=2$, the classical approach using moment statistics requires about $2^{30}$ sample points to obtain such information.
We compute equations for real multiplication on the divisor classes of genus-2 curves via algebraic correspondences. We do so by implementing van Wamelen’s method for computing equations for endomorphisms of Jacobians on examples drawn from the algebraic models for Hilbert modular surfaces computed by Elkies and Kumar. We also compute a correspondence over the universal family for the Hilbert modular surface of discriminant $5$ and use our equations to prove a conjecture of A. Wright on dynamics over the moduli space of Riemann surfaces.
Let $C/\mathbf{Q}$ be a curve of genus three, given as a double cover of a plane conic. Such a curve is hyperelliptic over the algebraic closure of $\mathbf{Q}$, but may not have a hyperelliptic model of the usual form over $\mathbf{Q}$. We describe an algorithm that computes the local zeta functions of $C$ at all odd primes of good reduction up to a prescribed bound $N$. The algorithm relies on an adaptation of the ‘accumulating remainder tree’ to matrices with entries in a quadratic field. We report on an implementation and compare its performance to previous algorithms for the ordinary hyperelliptic case.
In this article, we present a conjectural formula describing the cokernel of the Albanese map of zero-cycles of smooth projective varieties $X$ over $p$-adic fields in terms of the Néron–Severi group and provide a proof under additional assumptions on an integral model of $X$. The proof depends on a non-degeneracy result of Brauer–Manin pairing due to Saito–Sato and on Gabber–de Jong’s comparison result of cohomological and Azumaya–Brauer groups. We will also mention the local–global problem for the Albanese cokernel; the abelian group on the ‘local side’ turns out to be a finite group.
We give an explicit description of the stable reduction of superelliptic curves of the form yn=f(x) at primes $\mathfrak{p}$ whose residue characteristic is prime to the exponent n. We then use this description to compute the local L-factor and the exponent of conductor at $\mathfrak{p}$ of the curve.
We prove a direct image theorem stating that the direct image of a Galois formula by a morphism of difference schemes is equivalent to a Galois formula over fields with powers of Frobenius. As a consequence, we obtain an effective quantifier elimination procedure and a precise algebraic–geometric description of definable sets over fields with Frobenii in terms of twisted Galois formulas associated with finite Galois covers of difference schemes.
Given a family of varieties $X\rightarrow \mathbb{P}^{n}$ over a number field, we determine conditions under which there is a Brauer–Manin obstruction to weak approximation for 100% of the fibres which are everywhere locally soluble.
We introduce a common generalization of essentially all known methods for explicit computation of Selmer groups, which are used to bound the ranks of abelian varieties over global fields. We also simplify and extend the proofs relating what is computed to the cohomologically defined Selmer groups. Selmer group computations have been practical for many Jacobians of curves over $\mathbb{Q}$ of genus up to 2 since the 1990s, but our approach is the first to be practical for general curves of genus 3. We show that our approach succeeds on some genus 3 examples defined by polynomials with small coefficients.
In this paper we study the Oort conjecture concerning the non-existence of Shimura subvarieties contained generically in the Torelli locus in the Siegel modular variety ${\mathcal{A}}_{g}$. Using the poly-stability of Higgs bundles on curves and the slope inequality of Xiao on fibered surfaces, we show that a Shimura curve $C$ is not contained generically in the Torelli locus if its canonical Higgs bundle contains a unitary Higgs subbundle of rank at least $(4g+2)/5$. From this we prove that a Shimura subvariety of $\mathbf{SU}(n,1)$ type is not contained generically in the Torelli locus when a numerical inequality holds, which involves the genus $g$, the dimension $n+1$, the degree $2d$ of CM field of the Hermitian space, and the type of the symplectic representation defining the Shimura subdatum. A similar result holds for Shimura subvarieties of $\mathbf{SO}(n,2)$ type, defined by spin groups associated to quadratic spaces over a totally real number field of degree at least $6$ subject to some natural constraints of signatures.
Let $C\in \mathbb{Z}[x_{1},\ldots ,x_{n}]$ be a cubic form. Assume that $C$ splits into four forms. Then $C(x_{1},\ldots ,x_{n})=0$ has a non-trivial integer solution provided that $n\geqslant 10$.
For any number field we calculate the exact proportion of rational numbers which are everywhere locally a norm but not globally a norm from the number field.
The Bogomolov conjecture claims that a closed subvariety containing a dense subset of small points is a special kind of subvariety. In the arithmetic setting over number fields, the Bogomolov conjecture for abelian varieties has already been established as a theorem of Ullmo and Zhang, but in the geometric setting over function fields, it has not yet been solved completely. There are only some partial results known such as the totally degenerate case due to Gubler and our recent work generalizing Gubler’s result. The key in establishing the previous results on the Bogomolov conjecture is the equidistribution method due to Szpiro, Ullmo and Zhang with respect to the canonical measures. In this paper we exhibit the limits of this method, making an important contribution to the geometric version of the conjecture. In fact, by the crucial investigation of the support of the canonical measure on a subvariety, we show that the conjecture in full generality holds if the conjecture holds for abelian varieties which have anywhere good reduction. As a consequence, we establish a partial answer that generalizes our previous result.
We show that the restriction to square-free numbers of the representation function attached to a norm form does not correlate with nilsequences. By combining this result with previous work of Browning and the author, we obtain an application that is used in recent work of Harpaz and Wittenberg on the fibration method for rational points.
A conjecture of Scharaschkin and Skorobogatov states that there is a Brauer–Manin obstruction to the existence of rational points on a smooth geometrically irreducible curve over a number field. In this paper, we verify the Scharaschkin–Skorobogatov conjecture for explicit families of generalized Mordell curves. Our approach uses standard techniques from the Brauer–Manin obstruction and the arithmetic of certain threefolds.
We show that there are no non-trivial stratified bundles over a smooth simply connected quasi-projective variety over an algebraic closure of a finite field if the variety admits a normal projective compactification with boundary locus of codimension greater than or equal to $2$.