Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T16:07:48.307Z Has data issue: false hasContentIssue false

Failures of weak approximation in families

Published online by Cambridge University Press:  26 April 2016

M. J. Bright
Affiliation:
Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands email m.j.bright@math.leidenuniv.nl
T. D. Browning
Affiliation:
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK email t.d.browning@bristol.ac.uk
D. Loughran
Affiliation:
Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Welfengarten 1, 30167 Hannover, Germany email loughran@math.uni-hannover.de

Abstract

Given a family of varieties $X\rightarrow \mathbb{P}^{n}$ over a number field, we determine conditions under which there is a Brauer–Manin obstruction to weak approximation for 100% of the fibres which are everywhere locally soluble.

Type
Research Article
Copyright
© The Authors 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers , in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), 5171.Google Scholar
Bhargava, M., The geometric sieve and the density of squarefree values of invariant polynomials, Preprint (2014), arXiv:1402.0031.Google Scholar
Bhargava, M., Cremona, J. and Fisher, T., The proportion of plane cubic curves over $\mathbb{Q}$ that everywhere locally have a point, Int. J. Number Theory, to appear. Preprint (2013),arXiv:1311.5578.Google Scholar
Bhargava, M., Shankar, A. and Wang, J., Geometry-of-numbers methods over global fields I: Prehomogeneous vector spaces, Preprint (2015), arXiv:1512.03035.Google Scholar
Bright, M. J., Computations on diagonal quartic surfaces, PhD thesis, University of Cambridge (2002).Google Scholar
Bright, M. J., Bad reduction of the Brauer–Manin obstruction , J. Lond. Math. Soc. (2) 91 (2015), 643666.Google Scholar
Broberg, N., Rational points of cubic surfaces , in Rational points on algebraic varieties, Progress in Mathematics, vol. 199 (Birkhäuser, Basel, 2001), 1335.Google Scholar
Browning, T. D. and Heath-Brown, D. R., Forms in many variables and differing degrees, J. Eur. Math. Soc. (JEMS), to appear. Preprint (2014), arXiv:1403.5937.Google Scholar
Colliot-Thélène, J.-L., Points rationnels sur les fibrations , in Higher dimensional varieties and rational points (Budapest, 2001) (Springer, Berlin, 2003), 171221.Google Scholar
Colliot-Thélène, J.-L., Kanevsky, D. and Sansuc, J.-J., Arithmétique des surfaces cubiques diagonales , in Diophantine approximation and transcendence theory (Bonn, 1985), Lecture Notes in Mathematics, vol. 1290 (Springer, Berlin, 1987), 1108.Google Scholar
Colliot-Thélène, J.-L. and Sansuc, J.-J., La R-équivalence sur les tores , Ann. Sci. Éc. Norm. Supér. 10 (1977), 175229.Google Scholar
de la Bretèche, R., Browning, T. D. and Peyre, E., On Manin’s conjecture for a family of Châtelet surfaces , Ann. of Math. (2) 175 (2012), 297343.Google Scholar
Deligne, P., La conjecture de Weil, II , Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252.Google Scholar
Derenthal, U. and Wei, D., Strong approximation and descent, J. Reine Angew. Math., to appear. Preprint (2013), arXiv:1311.3914.Google Scholar
Ekedahl, T., An infinite version of the Chinese remainder theorem , Comment. Math. Univ. St. Pauli 40 (1991), 5359.Google Scholar
Frei, C. and Pieropan, M., O-minimality on twisted universal torsors and Manin’s conjecture over number fields, Ann. Sci. Éc. Norm. Supér., to appear. Preprint (2013), arXiv:1312.6603.Google Scholar
Grothendieck, A., Le groupe de Brauer I, II, III , in Dix exposés sur la cohomologie des schémas (North-Holland, Amsterdam; Masson, Paris, 1968), 88188.Google Scholar
Harari, D., Méthode des fibrations et obstruction de Manin , Duke Math. J. 75 (1994), 221260.Google Scholar
Harari, D., Flèches de spécialisation en cohomologie étale et applications arithmétiques , Bull. Soc. Math. France 125 (1997), 143166.Google Scholar
Harari, D., Weak approximation on algebraic varieties , in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progress in Mathematics, vol. 226 (Birkhäuser, Boston, 2004), 4360.Google Scholar
Jahnel, J. and Schindler, D., On the Brauer–Manin obstruction for degree four del Pezzo surfaces, Preprint (2015), arXiv:1503.08292.Google Scholar
Kleiman, S., The Picard scheme , in Fundamental algebraic geometry: Grothendieck’s FGA explained, Mathematical Surveys and Monographs, vol. 123 (American Mathematical Society, Providence, RI, 2005).Google Scholar
Lang, S. and Weil, A., Number of points of varieties in finite fields , Amer. J. Math. 76 (1954), 819827.Google Scholar
Loughran, D., The number of varieties in a family which contain a rational point, J. Eur. Math. Soc. (JEMS), to appear. Preprint (2013), arXiv:1310.6219.Google Scholar
Marcus, D. A., Number fields (Springer, New York, 1977).CrossRefGoogle Scholar
Milne, J. S., Étale cohomology (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Milne, J. S., Arithmetic duality theorems, second edition (BookSurge, 2006).Google Scholar
Neukirch, J., Algebraic number theory (Springer, Berlin, 1999).Google Scholar
Peyre, E. and Tschinkel, Y., Tamagawa numbers of diagonal cubic surfaces, numerical evidence , Math. Comp. 70 (2001), 367387.Google Scholar
Ponomaryov, K. N., Semialgebraic sets and variants of the Tarski–Seidenberg–Macintyre theorem , Algebra Logic 34 (1995), 182191.Google Scholar
Poonen, B. and Stoll, M., The Cassels–Tate pairing on polarized abelian varieties , Ann. of Math. (2) 150 (1999), 11091149.CrossRefGoogle Scholar
Poonen, B. and Voloch, J. F., Random Diophantine equations , in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progress in Mathematics, vol. 226 (Birkhäuser, Boston, 2004), 175184.Google Scholar
Riou, J., Classes de Chern, morphismes de Gysin, pureté absolue, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (Séminaire à l’École polytechnique 2006–2008), Astérisque, vols. 363–364 (Société Mathématique de France, 2014).Google Scholar
Schanuel, S., Heights in number fields , Bull. Soc. Math. France 107 (1979), 433449.Google Scholar
Schindler, D., Manin’s conjecture for certain biprojective hypersurfaces, J. Reine Angew. Math., to appear. Preprint (2013), arXiv:1307.7069.Google Scholar
Serre, J.-P., Spécialisation des éléments de Br2(Q(T 1, …, T n )) , C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 397402.Google Scholar
Serre, J.-P., Lectures on the Mordell–Weil theorem, third edition (F. Vieweg & Sohn, Braunschweig, 1997).Google Scholar
Grothendieck, A., Séminaire de géometrie algébrique du Bois-Marie SGA 1: revêtements étales et groupe fondamental, Lecture Notes in Mathematics, vol. 224 (Springer, Berlin, 1961).Google Scholar
Deligne, P., La classe de cohomologie associée à un cycle , in Séminaire de Géometrie Algébrique du Bois-Marie SGA 4½: Cohomologie étale, Lecture Notes in Mathematics, vol. 569 (Springer, Berlin, 1977).Google Scholar
Skorobogatov, A., Descent on fibrations over the projective line , Amer. J. Math. 118 (1996), 905923.Google Scholar
Skorobogatov, A., Torsors and rational points (Cambridge University Press, Cambridge, 2001).Google Scholar
Spain, P. G., Lipschitz2 : a new version of an old principle , Bull. Lond. Math. Soc. 27 (1995), 565566.Google Scholar
The Stacks Project Authors, Stacks Project (2014), http://stacks.math.columbia.edu.Google Scholar
Uematsu, T., On the Brauer group of diagonal cubic surfaces , Quart. J. Math. 65 (2014), 677701.CrossRefGoogle Scholar