Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:39:43.377Z Has data issue: false hasContentIssue false

On Goren–Oort stratification for quaternionic Shimura varieties

Published online by Cambridge University Press:  21 September 2016

Yichao Tian
Affiliation:
Morningside Center of Mathematics, Chinese Academy of Sciences, 55 Zhong Guan Cun East Road, Beijing 100190, China email yichaot@math.ac.cn
Liang Xiao
Affiliation:
UConn Department of Mathematics, 196 Auditorium Road, Unit 3009, Storrs, CT 06269-3009, USA email liang.xiao@uconn.edu

Abstract

Let $F$ be a totally real field in which a prime $p$ is unramified. We define the Goren–Oort stratification of the characteristic- $p$ fiber of a quaternionic Shimura variety of maximal level at $p$ . We show that each stratum is a $(\mathbb{P}^{1})^{r}$ -bundle over other quaternionic Shimura varieties (for an appropriate integer $r$ ). As an application, we give a necessary condition for the ampleness of a modular line bundle on a quaternionic Shimura variety in characteristic $p$ .

Type
Research Article
Copyright
© The Authors 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreatta, F. and Goren, E., Hilbert modular varieties of low dimension , in Geometric aspects of Dwork theory I (De Gruyter, 2004), 113175.Google Scholar
Bachmat, E. and Goren, E. Z., On the non-ordinary locus in Hilbert–Blumenthal surfaces , Math. Ann. 313 (1999), 475506.CrossRefGoogle Scholar
Berthelot, P., Breen, L. and Messing, W., Théorie de Dieudonné cristalline II, Lecture Notes in Mathematics, vol. 930 (Springer, 1982).CrossRefGoogle Scholar
Borel, A., Linear algebraic groups, Graduate Texts in Mathematics, vol. 126 (Springer, New York, 1991).Google Scholar
Carayol, H., Sur la mauvaise réduction des courbes de Shimura , Compositio Math. 59 (1986), 151230.Google Scholar
Deligne, P., Travaux de Shimura , in Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Lecture Notes in Mathematics, vol. 244 (Springer, Berlin, 1971), 123165.Google Scholar
Deligne, P., Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques , in Automorphic forms, representations and L-functions, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 247289.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude locale des schémas et des morphismes de schémas, Troisième partie , Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5255.Google Scholar
Goren, E. and Oort, F., Stratifications of Hilbert modular varieties , J. Algebraic Geom. 9 (2000), 111154.Google Scholar
Grothendieck, A., Groupes de Barsotti–Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérior, vol. 45 (Presses de l’Université de Montréal, 1974).Google Scholar
Helm, D., Towards a geometric Jacquet–Langlands correspondence for unitary Shimura varieties , Duke Math. J. 155 (2010), 483518.CrossRefGoogle Scholar
Helm, D., A geometric Jacquet–Langlands correspondence for U (2) Shimura varieties , Israel J. Math. 187 (2012), 3780.CrossRefGoogle Scholar
Hida, H., p-adic automorphic forms on Shimura varieties (Springer, 2004).Google Scholar
Kisin, M., Integral models for Shimura varieties of abelian type , J. Amer. Math. Soc. 23 (2010), 9671012.Google Scholar
Kottwitz, R., Points on some Shimura varieties over finite fields , J. Amer. Math. Soc. 5 (1992), 373444.CrossRefGoogle Scholar
Lan, K.-W., Arithmetic compactifications of PEL-type Shimura varieties, London Mathematical Society Monographs, vol. 36 (Princeton University Press, Princeton, NJ, 2013).Google Scholar
Matsumura, H., Commutative ring theory (Cambridge University Press, 1986), translated by M. Reid.Google Scholar
Mazur, B. and Messing, W., Universal extensions and one-dimensional crystalline cohomology, Lecture Notes in Mathematics, vol. 370 (Springer, 1974).Google Scholar
Milne, J., Canonical models of (mixed) Shimura varieties and automorphic vector bundles , in Shimura varieties and L-functions, I (Academic Press, New York, 1990), 284414.Google Scholar
Milne, J., Introduction to Shimura varieties , in Harmonic analysis, the trace formula, and Shimura varieties, Clay Mathematics Proceedings, vol. 4 (American Mathematical Society, Providence, RI, 2005), 265378.Google Scholar
Minguez, A., Unramified representations of unitary groups , in On the stabilization of the trace formula (International Press, 2011), 389410.Google Scholar
Moonen, B., Models of Shimura varieties in mixed characteristics , in Galois representations in arithmetic algebraic geometry (Durham, 1996), London Mathematical Society Lecture Note Series, vol. 254 (Cambridge University Press, 1998), 267350.Google Scholar
Rapoport, M., Compactification de l’espace de modules de Hilbert–Blumenthal , Compositio Math. 36 (1978), 255335.Google Scholar
Rapoport, M. and Zink, T., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press), 1996.Google Scholar
Saito, T., Hilbert modular forms and p-adic Hodge theory , Compositio Math. 145 (2009), 10811113.Google Scholar
Serre, J. P., Two letters on quaternions and modular forms (mod p) , Israel J. Math. 95 (1996), 281299.Google Scholar
Grothendieck, A., Séminaire de géométrie algébrique du Bois Marie 1965–1966, SGA 5 , in Cohomologie -adic et fonctions L , Lecture Notes in Mathematics, vol. 589 (Springer, 1977) (avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J. P. Jouanolou et J. P. Serre).Google Scholar
Tian, Y. and Xiao, L., $p$ -adic cohomology and classicality of overconvergent Hilbert modular forms, Astérisque, to appear. Preprint (2013), arXiv:1308.0779.Google Scholar
Tian, Y. and Xiao, L., Tate cycles on quaternionic Shimura varieties over finite fields, Preprint (2014), arXiv:1410.2321.Google Scholar