To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any bounded linear operator A in a Banach space, two generalized condition numbers, k(A) and k(A) are defined in this paper. These condition numbers may be applied to the perturbation analysis for the solution of ill-posed differential equations and bounded linear operator equations in infinite dimensional Banach spaces. Different expressions for the two generalized condition numbers are discussed in this paper and applied to the perturbation analysis of the operator equation.
Let T be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of T is the set σBW(T) of all λ ∈ Сsuch that T − λI is not a B-Fredholm operator of index 0. Let E(T) be the set of all isolated eigenvalues of T. The aim of this paper is to show that if T is a hyponormal operator, then T satisfies generalized Weyl's theorem σBW(T) = σ(T)/E(T), and the B-Weyl spectrum σBW(T) of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of operators satisfying generalized Weyl's theorem.
In this paper, we prove that two homogeneous quasi-invariant subspaces are similar only if they are equal. Moreover, we exhibit an example to show how to determine the similarity orbits of quasi-invariant subspaces.
Given two m-tuples of commuting spectral operators on a Hilbert space, T = (T1,…, Tm) and S = (S1,…, Sm), an extended version of Henrici perturbation theorem is obtained for the joint approximate spectrum of S under perturbation by T. We also derive an extended version of Bauer-Fike theorem for such tuples of operators. The method used involves Clifford algebra techniques introduced by McIntosh and Pryde.
The connection between Clifford analysis and the Weyl functional calculus for a d-tuple of bounded selfadjoint operators is used to prove a geometric condition due to J. Bazer and D. H. Y. Yen for a point to be in the support of the Weyl functional calculus for a pair of hermitian matrices. Examples are exhibited in which the support has gaps.
Let X be a Banach space with the analytic UMD property, and let A and B be two commuting sectorial operators on X which admit bounded H∞ functional calculi with respect to angles θ1 and θ2 satisfying θ1 + θ2 > π. It was proved by Kalton and Weis that in this case, A + B is closed. The first result of this paper is that under the same conditions, A + B actually admits a bounded H∞ functional calculus. Our second result is that given a Banach space X and a number 1 ≦ p < ∞, the derivation operator on the vector valued Hardy space Hp (R; X) admits a bounded H∞ functional calculus if and only if X has the analytic UMD property. This is an ‘analytic’ version of the well-known characterization of UMD by the boundedness of the H∞ functional calculus of the derivation operator on vector valued Lp-spaces Lp (R; X) for 1 < p < ∞ (Dore-Venni, Hieber-Prüss, Prüss).
Additive perturbation results for the generalized Drazin inverse of Banach space operators are presented. Precisely, if Ad denotes the generalized Drazin inverse of a bounded linear operator A on an arbitrary complex Banach space, then in some special cases (A + B)d is computed in terms of Ad and Bd. Thus, recent results of Hartwig, Wang and Wei (Linear Algebra Appl. 322 (2001), 207–217) are extended to infinite dimensional settings with simplified proofs.
We study the perturbation of the generalized Drazin inverse for the elements of Banach algebras and bounded linear operators on Banach space. This work, among other things, extends the results obtained by the second author and Guorong Wang on the Drazin inverse for matrices.
This paper gives a complete classification of essentially commutative C*-algebras whose essential spectrum is homeomorphic to S2n−1 by their characteristic numbers. Let 1, 2 be such two C*-algebras; then they are C*-isomorphic if and only if they have the same n-th characteristic number. Furthermore, let γn() = m then is C*-isomorphic to C*(Mzl, …, Mzn) if m = 0, is C*-isomorphic C*(Tz1, …, Tzn−1, Tznm) if m ≠ 0. Some examples are given to show applications of the classfication theorem. We finally remark that the proof of the theorem depends on a construction of a complete system of representatives of Ext(S2n−1).
Using the comparsion results for positive compact operators by Aliprantis and Burkinshow, Mokhtar Kharroubi investigated cimpactness properties of positive semigroups on Banach latttices. The aim of this paper is to study these properties in general Banach spaces (without positivity). Our results generalize a part fo those obtained by Mokhtar-Kharroubi to general Banach spaces context. More specifically, we derive conditions which ensure the compactness of the remainder term Rn(t) for some inteter n. The improvement here is that it can applied directly to the neutron transport equation for a wide class of collision operators.
Let A and B be (not necessarily bounded) linear operators on a Banach lattice E such that |(s – B)-1x|≤ (s – A)-1|x| for all x in E and sufficiently large s ∈ R. The main purpose of this paper is to investigate the relation between the spectra σ(B) and σ(A) of B and A, respectively. We apply our results to study asymptotic properties of dominated C0-semigroups.
We consider a singularly perturbed (finite state) Markov chain and provide a complete characterization of the fundamental matrix. In particular, we obtain a formula for the regular part simpler than a previous formula obtained by Schweitzer, and the singular part is obtained via a reduction process similar to Delebecque's reduction for the stationary distribution. In contrast to previous approaches, one works with aggregate Markov chains of much smaller dimension than the original chain, an essential feature for practical computation. An application to mean first-passage times is also presented.
The authors establish the boundedness on the Herz spaces and the weak Herz spaces for a large class of rough singular integral operators and their corresponding fractional versions. Applications are given to Fefferman's rough singular integral operators, their fractional versions, their commutators with BMO() functions and Ricci-Stein oscillatory singular integral operators. Some new results are obtained.
We prove a new representation of the generator of a subordinate semigroup as limit of bounded operators. Our construction yields, in particular, a characterization of the domain of the generator. The generator of a subordinate semigroup can be viewed as a function of the generator of the original semigroup. For a large class these functions we show that operations at the level of functions has its counterpart at the level of operators.
Iseki [11] defined a general notion of ergodicity suitable for functions ϕ: J → X where J is an arbitrary abelian semigroup and X is a Banach space. In this paper we develop the theory of such functions, showing in particular that it fits the general framework established by Eberlein [9] for ergodicity of semigroups of operators acting on X. Moreover, let A be a translation invariant closed subspace of the space of all bounded functions from J to X. We prove that if A contains the constant functions and ϕ is an ergodic function whose differences lie in A then ϕ ∈ A. This result has applications to spaces of sequences facilitating new proofs of theorems of Gelfand and Katznelson-Tzafriri [12]. We also obtain a decomposition for the space of ergodic vectors of a representation T: J → L(X) generalizing results known for the case J = Z+. Finally, when J is a subsemigroup of a locally compact abelian group G, we compare the Iseki integrals with the better known Cesàro integrals.
In Banach space operators with a bounded H∞ functional calculus, Cowling et al. provide some necessary and sufficient conditions for a type-ω operator to have a bounded H∞ functional calculus. We provide an alternate development of some of their ideas using a modified Cauchy kernel which is L1 with respect to the measure ]dz]/]z]. The method is direct and has the advantage that no transforms of the functions are necessary.
We investigate the relationship between the peripheral spectrum of a positive operator T on a Banach lattice E and the peripheral spectrum of the operators S dominated by T, that is, ]Sx] ≤ T]x] for all x ε E. This can be applied to obtain inheritance results for asymptotic properties of dominated operators.
In this paper, we give a general definition for f(T) when T is a linear operator acting in a Banach space, whose spectrum lies within some sector, and which satisfies certain resolvent bounds, and when f is holomorphic on a larger sector.
We also examine how certain properties of this functional calculus, such as the existence of a bounded H∈ functional calculus, bounds on the imaginary powers, and square function estimates are related. In particular we show that, if T is acting in a reflexive Lp space, then T has a bounded H∈ functional calculus if and only if both T and its dual satisfy square function estimates. Examples are given to show that some of the theorems that hold for operators in a Hilbert space do not extend to the general Banach space setting.
We prove estimates on the speed of convergence of the ‘peripheral eigenvalues’ (and principal eigenvectors) of a sequence Tn of positive operators on a Banach lattice E to the peripheral eigenvalues of its limit operator T on E which is positive, irreducible and such that the spectral radius r(T) of T is a Riesz point of the spectrum of T (that is, a pole of the resolvent of T with a residuum of finite rank) under some conditions on the kind of approximation of Tn to T. These results sharpen results of convergence obtained by the authors in previous papers.