Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:20:02.443Z Has data issue: false hasContentIssue false

Homogeneous quasi-invariant subspaces of the fock space

Published online by Cambridge University Press:  09 April 2009

Kunyu Guo
Affiliation:
Department of Mathematics, Fudan University, Shanghai 200433 P.R., China, e-mail: kyguo@fudan.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove that two homogeneous quasi-invariant subspaces are similar only if they are equal. Moreover, we exhibit an example to show how to determine the similarity orbits of quasi-invariant subspaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Agrawal, O., Clark, D. and Douglas, R., ‘Invariant subspaces in the polydisk’, Pacific J. Math. 121 (1986), 111.Google Scholar
[2]Agrawal, O. and Salinas, N., ‘Sharp kernels and canonical subspaces’, Amer J. Math. 109 (1987), 2348.Google Scholar
[3]Ahern, P. and Clark, D., ‘Invariant subspaces and analytic continuation in several variables’, J. Math. and Mech. 19 (1970), 963969.Google Scholar
[4]Axler, S. and Bourdon, P., ‘Finite codimensional invariant subspaces of Bergman spaces’, Trans. Amer. Math. Soc. 305 (1986), 113.Google Scholar
[5]Chen, X. and Douglas, R., ‘Rigidity of Hardy submodules on the unit ball’, Houston J. Math. 18 (1992), 117125.Google Scholar
[6]Chen, X., Guo, K. and Hou, S., ‘Analytic Hilbert spaces on the complex plane’, J. Math. Anal. Appl. 268 (2002), 684700.Google Scholar
[7]Douglas, R. and Paulsen, V., Hilbert modules over function algebra, Pitman Research Notes in Mathematics 217 (Wiley & Sons, New York, 1989).Google Scholar
[8]Douglas, R., Paulsena, V., Sah, C. and Yan, K., ‘Algebraic reduction and rigidity for Hilbert modules’, Amer. J. Math. 117 (1995), 7592.CrossRefGoogle Scholar
[9]Guo, K., ‘Algebraic reduction for Hardy submodules over polydisk algebras’, J. Operator Theory 41 (1999), 127138.Google Scholar
[10]Guo, K., ‘Characteristic spaces and rigidity for analytic Hilbert modules’, J. Funct. Anal. 163 (1999), 133151.Google Scholar
[11]Guo, K., ‘Equivalence of Hardy submodules generated by polynomials’, J. Fund. Anal. 178 (2000), 343371.Google Scholar
[12]Guo, K., ‘Podal subspaces on the unit polydisk’, Studia Math. 149 (2002), 109120.CrossRefGoogle Scholar
[13]Guo, K. and Zheng, D., ‘Invariant subspaces, quasi-invariant subspaces and Hankel operators’, J. Funct. Anal. 187 (2001), 308342.CrossRefGoogle Scholar
[14]Putinar, M., ‘On invariant subspaces of several variable Bergman spaces’, Pacific J. Math. 147 (1991), 355364.CrossRefGoogle Scholar
[15]Richter, S., ‘Unitary equivalence of invariant subspaces of the Bergman and Dirichlet spaces’, Pacific J. Math. 133 (1988), 151156.Google Scholar
[16]Rudin, W., Function theory in the unit ball of Cn (Springer, New York, 1980).CrossRefGoogle Scholar
[17]Rudin, W., New construction of functions holomorphic in the unit ball of Cn, CBMS Regional Conference Series in Mathematics 63 (Amer. Math. Soc., Providence, 1986).CrossRefGoogle Scholar