Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T00:24:08.021Z Has data issue: false hasContentIssue false

Lacunas in the Support of the Weyl Calculus for Two Hermitian Matrices

Published online by Cambridge University Press:  09 April 2009

Bernd Straub
Affiliation:
School of Mathematics The University of New South Wales Sydney NSW 2052 Australia e-mail: b.jefferies@unsw.edu.au, bernd@maths.unsw.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The connection between Clifford analysis and the Weyl functional calculus for a d-tuple of bounded selfadjoint operators is used to prove a geometric condition due to J. Bazer and D. H. Y. Yen for a point to be in the support of the Weyl functional calculus for a pair of hermitian matrices. Examples are exhibited in which the support has gaps.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Ahlfors, L., Complex analysis, 2nd Edition (McGraw Hill, New York, 1966).Google Scholar
[2]Anderson, R. F. V., ‘The Weyl functional calculus’, J. Funct. Anal. 4 (1969), 240267.CrossRefGoogle Scholar
[3]Atiyah, M., Bott, R. and Gårding, L., ‘Lacunas for hyperbolic differential operators with constant coefficients I’, Acta Math. 124 (1970), 109189.CrossRefGoogle Scholar
[4]Atiyah, M., Bott, R. and Gårding, L., ‘Lacunas for hyperbolic differential operators with constant coefficients II’, Acta Math. 131 (1973), 145206.CrossRefGoogle Scholar
[5]Baumgärtel, H., Analytic perturbation theory for matrices and operators, Operator Theory: Advances and Applications 15 (Birkhäuser, Basel, 1985).Google Scholar
[6]Bazer, J. and Yen, D. H. Y., ‘The Riemann matrix of (2+1)-dimensional symmetric hyperbolic systems’, Comm. Pure Appl. Math. 20 (1967), 329363.Google Scholar
[7]Bazer, J. and Yen, D. H. Y., ‘Lacunas of the Riemann matrix of symmetric-hyperbolic systems in two space variables’, Comm. Pure Appl. Math. 22 (1969), 279333.CrossRefGoogle Scholar
[8]Bochnak, J., Coste, M. and Roy, M.-F., Géométrie algébrique réelle (Springer, New York, 1987).Google Scholar
[9]Brackx, F., Delanghe, R. and Sommen, F., Clifford analysis, Research Notes in Mathematics 76 (Pitman, Boston, 1982).Google Scholar
[10]Bremermann, H., Distributions, complex variables and Fourier transforms (Addison-Wesley, Reading, 1964).Google Scholar
[11]Dunford, N. and Schwartz, J. T., Linear operators. Part II., (Interscience, New York, 1963).Google Scholar
[12]Greiner, G. and Ricker, W., ‘Commutativity of compact selfadjoint operators’, Studia Math. 112 (1995), 109125.Google Scholar
[13]Gustafson, K. and Rao, D. K. M., Numerical range, the field of values of linear operators and matrices (Springer, New York, 1997).Google Scholar
[14]Hillman, J. A., Jefferies, B., Ricker, W. and Straub, B., ‘Differential properties of the numerical range map of pairs of matrices’, Linear Algebra Appl. 267 (1997), 317334.CrossRefGoogle Scholar
[15]Jefferies, B., ‘The Weyl calculus for hermitian matrices’, Proc. Amer. Math. Soc. 124 (1996), 121128.CrossRefGoogle Scholar
[16]Jefferies, B., ‘Exponential bounds for noncommuting systems of matrices’, Studia Math. 144 (2001), 197207.CrossRefGoogle Scholar
[17]Jefferies, B. and McIntosh, A., ‘The Weyl calculus and Clifford analysis’, Bull. Austral. Math. Soc. 57 (1998), 329341.CrossRefGoogle Scholar
[18]Jefferies, B., McIntosh, A. and Picton-Warlow, J., ‘The monogenic functional calculus’, Studia Math. 136 (1999), 99119.Google Scholar
[19]Jefferies, B. and Ricker, W., ‘Commutativity for (2 × 2) systems of selfadjoint matrices’, Linear and Multilinear Algebra 35 (1993), 107114.CrossRefGoogle Scholar
[20]John, F., Plane waves and spherical means applied to partial differential equations (Interscience, New York, 1955).Google Scholar
[21]Joswig, M. and Straub, B., ‘On the numerical range map’, J. Austral. Math. Soc. (Series A) 65 (1998), 267283.CrossRefGoogle Scholar
[22]Kato, T., Perturbation theory for linear operators, 2nd Edition (Springer, Berlin, 1980).Google Scholar
[23]Kippenhahn, R., ‘Über den Wertevorrat einer Matrix’, Math. Nachr. 6 (1951), 193228.CrossRefGoogle Scholar
[24]Li, C., McIntosh, A. and Qian, T., ‘Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces’, Rev. Mat. Iberoamericana 10 (1994), 665721.CrossRefGoogle Scholar
[25]Murnaghan, F. D., ‘On the field of values of a square matrix’, Proc. Nat. Acad. Sci. U.S.A. 18 (1932), 246248.CrossRefGoogle ScholarPubMed
[26]Nelson, E., ‘Operants: A functional calculus for non-commuting operators’, in: Functional analysis and related fields, Proceedings of a conference in honour of Professor Marshal Stone, Univ. of Chicago, May 1968 (ed. Browder, F. E.) (Springer, Berlin, 1970) pp. 172187.Google Scholar
[27]Petrovsky, I., ‘On the diffusion of waves and lacunas for hyperbolic equations’, Mat. Sbornik 17 (1945), 289368.Google Scholar
[28]Rellich, F., ‘Störungstheorie der Spektralzerlegung I’, Math. Ann. 113 (1937), 600619.CrossRefGoogle Scholar
[29]Ricker, W., ‘The Weyl calculus, joint spectra and commutativity of compact, selfadjoint operators’, Integral Equations Operator Theory 22 (1995), 333338.CrossRefGoogle Scholar
[30]Ryan, J., ‘Plemelj formulae and transformations associated to plane wave decompositions in complex Clifford analysis’, Proc. London Math. Soc. 64 (1992), 7094.CrossRefGoogle Scholar
[31]Shafarevich, I. R., Basic algebraic geometry (Springer, New York, 1977).Google Scholar
[32]Sommen, F., ‘Plane wave decompositions of monogenic functions’, Ann. Polon. Math. 49 (1988), 101114.CrossRefGoogle Scholar
[33]Taylor, M. E., ‘Functions of several self-adjoint operators’, Proc. Amer. Math. Soc. 19 (1968), 9198.CrossRefGoogle Scholar
[34]Vassiliev, V. A., Ramified integrals, singularities and lacunas, Mathematics and its Applications 315 (Kluwer, Dordrecht, 1995).CrossRefGoogle Scholar
[35]Weitzner, H., ‘Green's function for two-dimensional magnetohydrodynamic waves, I, II’, Phys. Fluids 4 (1961), 12381245, 1246–1250.CrossRefGoogle Scholar