Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T01:53:26.315Z Has data issue: false hasContentIssue false

Subordination in the sense of Bochner and a related functional calculus

Published online by Cambridge University Press:  09 April 2009

René L. Schilling
Affiliation:
Max-Planck-InstitutFür Mathematik in den Naturwissenschaften Inselstrasse 22-26 04103 LeipzigGermany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a new representation of the generator of a subordinate semigroup as limit of bounded operators. Our construction yields, in particular, a characterization of the domain of the generator. The generator of a subordinate semigroup can be viewed as a function of the generator of the original semigroup. For a large class these functions we show that operations at the level of functions has its counterpart at the level of operators.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Berg, C., ‘The Stieltjes cone is logarithmically convex’, in: Laine, I., Lehto, O. and Sorvali, T., Complex analysis, Joensuu 1978, Lecture Notes in Math. 747, (Springer, Berlin, 1979), pp. 4654.Google Scholar
[2]Berg, C., Boyadzhiev, Kh. and deLaubenfels, R., ‘Generation of generators of holomorphic semigroups’, J. Austral. Math. Soc. (Series A) 55 (1993), 246269.CrossRefGoogle Scholar
[3]Berg, C. and Forst, G., Potential theory on locally compact Abelian groups, Ergeb. Math. Grenzgeb. II, 87 (Springer, Berlin, 1975).Google Scholar
[4]Bochner, S., ‘Diffusion equation and stochastic processes’, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 368370.Google Scholar
[5]Bochner, S., Harmonic analysis and the theory of probability (University of Califormia Press, Berkeley, 1955).CrossRefGoogle Scholar
[6]deLaubenfels, R., ‘Automatic extensions of functional calculi’, Studia Math. 114 (1995), 237259.Google Scholar
[7]Dunford, N. and Schwartz, J. T., Linear operators I, Pure Appl. Math. 7 (Interscience, New York, 1957).Google Scholar
[8]Ethier, S. E. and Kurtz, T. G., Markov processes: Characterization and convergence, Wiley Ser. Probab. Math. Statist. (Wiley, New York 1986).Google Scholar
[9]Heinz, E., ‘Beiträge zur Störungstheorie de Spektralzerlegung’, Math. Ann. 123 (1951), 415438.CrossRefGoogle Scholar
[10]Hille, E. and Phillips, R. S., Functional analyis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31 (Amer. Math. Soc., Providence, 1957) (2nd ed.).Google Scholar
[11]Hirsch, F., ‘Domaines d'opérateurs representés comme integrales de resolvantes’, J. Funct. Anal. 23 (1976), 239264.CrossRefGoogle Scholar
[12]Jacob, N. and Schilling, R. L., ‘Subordination in the sense of S. Bochner - An approach through pseudo differential operators’, Math. Nachr. 178 (1996), 199231.Google Scholar
[13]Nollau, V., ‘Über gebrochene Potenzen infinitesimaler Generatoren Markovscher Übergangswahrscheinlichkeiten I’, Math. Nachr. 65 (1975), 235246.Google Scholar
[14]Pazy, A., Semigroups of linear operators and applications to partial differential equations, Applied Math. Ser. 44 (Springer, Berlin, 1983).Google Scholar
[15]Phillips, R. S., ‘On the generation of semigroups of linear operators’, Pacific J. Math. 2 (1952), 343369.Google Scholar
[16]Prüss, J., Evolutionary integral equations and applications, Monographs Math. 87 (Birkhaüser, Basel, 1993).CrossRefGoogle Scholar
[17]Rogers, L. C. G. and Williams, D., Diffusions, Markov processes, and martingales. I: Foundations, Wiley Ser. Probab. Math. Statist. (Wiley, New York, 1994) (2nd ed.).Google Scholar
[18]Schilling, R. L., Zum Pfadverhalten von Markovschen Prozessen, die mit Lévy-Prozessen vergleichbar sind (Dissertation, Universität Erlangen 1994).Google Scholar
[19]Schilling, R. L., ‘On the domain of the generator of a subordinate semigroup’, in: Král, J. et al. , (eds.), Potential Theory—ICPT 94. Proceedings Internat. Conf Potential Theory, Kouty (CR), 1994 (de Gruyter, Berlin, 1996), pp. 449462.Google Scholar
[20]Srivastava, H. M. and Tuan, V. K., ‘A new convolution theorem for the Stieltjes transform and its application to a class of singular integral equations’, Arch. Math. 64 (1995), 144149.CrossRefGoogle Scholar
[21]Tanabe, H., Equations of evolution, Pitman Monographs Surveys Pure Appl. Math. 6 (Longman Sci. Tech., Harlow, 1979).Google Scholar
[22]Westphal, U., ‘Ein kalküll für gebrochene Potenzen infinitesimaler Erzeuger von Halbgruppen und Gruppen von Operatoren. Teil I: Halbgruppenerzeuger’, Compositio Math. 22 (1970), 67103.Google Scholar
[23]yosida, K., Functional analysis, Grundlehren Math. Wiss. 123 (Springer, Berlin, 1980) (6th ed.).Google Scholar