To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If A is a real $2n \times 2n$ positive definite matrix, then there exists a symplectic matrix M such that $M^TAM=\text {diag}(D, D),$ where D is a positive diagonal matrix with diagonal entries $d_1(A)\leqslant \cdots \leqslant d_n(A).$ We prove a maxmin principle for $d_k(A)$ akin to the classical Courant–Fisher–Weyl principle for Hermitian eigenvalues and use it to derive an analogue of the Weyl inequality $d_{i+j-1}(A+B)\geqslant d_i(A)+d_j(B).$
For an n-tuple of positive invertible operators on a Hilbert space, we present some variants of Ando–Hiai type inequalities for deformed means from an n-variable operator mean by an operator mean, which is related to the information monotonicity of a certain unital positive linear map. As an application, we investigate the monotonicity of the power mean from the deformed mean in terms of the generalized Kantorovich constants under the operator order. Moreover, we improve the norm inequality for the operator power means related to the Log-Euclidean mean in terms of the Specht ratio.
In this article, we study some Kramers–Fokker–Planck operators with a polynomial potential $V(q)$ of degree greater than two having quadratic limiting behaviour. This work provides an accurate global subelliptic estimate for Kramers–Fokker–Planck operators under some conditions imposed on the potential.
We obtain several norm and eigenvalue inequalities for positive matrices partitioned into four blocks. The results involve the numerical range $W(X)$ of the off-diagonal block $X$, especially the distance $d$ from $0$ to $W(X)$. A special consequence is an estimate,
For any $\alpha \in \mathbb {R},$ we consider the weighted Taylor shift operators $T_{\alpha }$ acting on the space of analytic functions in the unit disc given by $T_{\alpha }:H(\mathbb {D})\rightarrow H(\mathbb {D}),$
We establish the optimal growth of frequently hypercyclic functions for$T_\alpha $ in terms of $L^p$ averages, $1\leq p\leq +\infty $. This allows us to highlight a critical exponent.
We first introduce the weighted averaged projection sequence in $\text{CAT}(\unicode[STIX]{x1D705})$ spaces and then we establish some inequalities for the weighted averaged projection sequence. Using the inequalities, we prove the asymptotic regularity and the $\unicode[STIX]{x1D6E5}$-convergence of the weighted averaged projection sequence. Furthermore, we prove the strong convergence of the sequence under certain regularity or compactness conditions on $\text{CAT}(\unicode[STIX]{x1D705})$ spaces.
We investigate the real space H of Hermitian matrices in $M_n(\mathbb{C})$ with respect to norms on $\mathbb{C}^n$. For absolute norms, the general form of Hermitian matrices was essentially established by Schneider and Turner [Schneider and Turner, Linear and Multilinear Algebra (1973), 9–31]. Here, we offer a much shorter proof. For non-absolute norms, we begin an investigation of H by means of a series of examples, with particular reference to dimension and commutativity.
For an inner function u, we discuss the dual operator for the compressed shift $P_u S|_{{\mathcal {K}}_u}$, where ${\mathcal {K}}_u$ is the model space for u. We describe the unitary equivalence/similarity classes for these duals as well as their invariant subspaces.
Let $\Omega \subset \mathbb {R}^N$, $N\geq 2$, be an open bounded connected set. We consider the fractional weighted eigenvalue problem $(-\Delta )^s u =\lambda \rho u$ in $\Omega $ with homogeneous Dirichlet boundary condition, where $(-\Delta )^s$, $s\in (0,1)$, is the fractional Laplacian operator, $\lambda \in \mathbb {R}$ and $ \rho \in L^\infty (\Omega )$.
We study weak* continuity, convexity and Gâteaux differentiability of the map $\rho \mapsto 1/\lambda _1(\rho )$, where $\lambda _1(\rho )$ is the first positive eigenvalue. Moreover, denoting by $\mathcal {G}(\rho _0)$ the class of rearrangements of $\rho _0$, we prove the existence of a minimizer of $\lambda _1(\rho )$ when $\rho $ varies on $\mathcal {G}(\rho _0)$. Finally, we show that, if $\Omega $ is Steiner symmetric, then every minimizer shares the same symmetry.
We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show a simple and natural example of a homogeneous polynomial with an orbit that is at the same time $\unicode[STIX]{x1D6FF}$-dense (the orbit meets every ball of radius $\unicode[STIX]{x1D6FF}$), weakly dense and such that $\unicode[STIX]{x1D6E4}\cdot \text{Orb}_{P}(x)$ is dense for every $\unicode[STIX]{x1D6E4}\subset \mathbb{C}$ that either is unbounded or has 0 as an accumulation point. Moreover, we generalize the construction to arbitrary infinite-dimensional separable Banach spaces. To prove this, we study Julia sets of homogeneous polynomials on Banach spaces.
Building on MacDonald’s formula for the distance from a rank-one projection to the set of nilpotents in $\mathbb {M}_n(\mathbb {C})$, we prove that the distance from a rank $n-1$ projection to the set of nilpotents in $\mathbb {M}_n(\mathbb {C})$ is $\frac {1}{2}\sec (\frac {\pi }{\frac {n}{n-1}+2} )$. For each $n\geq 2$, we construct examples of pairs $(Q,T)$ where Q is a projection of rank $n-1$ and $T\in \mathbb {M}_n(\mathbb {C})$ is a nilpotent of minimal distance to Q. Furthermore, we prove that any two such pairs are unitarily equivalent. We end by discussing possible extensions of these results in the case of projections of intermediate ranks.
The aim of this paper is to develop an approach to obtain self-adjoint extensions of symmetric operators acting on anti-dual pairs. The main advantage of such a result is that it can be applied for structures not carrying a Hilbert space structure or a normable topology. In fact, we will show how hermitian extensions of linear functionals of involutive algebras can be governed by means of their induced operators. As an operator theoretic application, we provide a direct generalization of Parrott’s theorem on contractive completion of 2 by 2 block operator-valued matrices. To exhibit the applicability in noncommutative integration, we characterize hermitian extendibility of symmetric functionals defined on a left ideal of a $C^{\ast }$-algebra.
A well-known result in the area of dynamical systems asserts that any invertible hyperbolic operator on any Banach space is structurally stable. This result was originally obtained by Hartman in 1960 for operators on finite-dimensional spaces. The general case was independently obtained by Palis and Pugh around 1968. We will exhibit a class of examples of structurally stable operators that are not hyperbolic, thereby showing that the converse of the above-mentioned result is false in general. We will also prove that an invertible operator on a Banach space is hyperbolic if and only if it is expansive and has the shadowing property. Moreover, we will show that if a structurally stable operator is expansive, then it must be uniformly expansive. Finally, we will characterize the weighted shifts on the spaces $c_{0}(\mathbb{Z})$ and $\ell _{p}(\mathbb{Z})$ ($1\leq p<\infty$) that satisfy the shadowing property.
We establish inequalities of Jensen’s and Slater’s type in the general setting of a Hermitian unital Banach $\ast$-algebra, analytic convex functions and positive normalised linear functionals.
We improve a recent result by giving the optimal conclusion both to the frequent universality criterion and the frequent hypercyclicity criterion using the notion of $A$-densities, where $A$ refers to some weighted densities sharper than the natural lower density. Moreover, we construct an operator which is logarithmically frequently hypercyclic but not frequently hypercyclic.
It is shown that Jamison sequences, introduced in 2007 by Badea and Grivaux, arise naturally in the study of topological groups with no small subgroups, of Banach or normed algebra elements whose powers are close to identity along subsequences, and in characterizations of (self-adjoint) positive operators by the accretiveness of some of their powers. The common core of these results is a description of those sequences for which non-identity elements in Lie groups or normed algebras escape an arbitrary small neighborhood of the identity in a number of steps belonging to the given sequence. Several spectral characterizations of Jamison sequences are given, and other related results are proved.
Let ${\mathcal{A}}$ be a complex unital Banach algebra, let $a$ be an element in it and let $0<\unicode[STIX]{x1D716}<1$. In this article, we study the upper and lower hemicontinuity and joint continuity of the condition spectrum and its level set maps in appropriate settings. We emphasize that the empty interior of the $\unicode[STIX]{x1D716}$-level set of a condition spectrum at a given $(\unicode[STIX]{x1D716},a)$ plays a pivotal role in the continuity of the required maps at that point. Further, uniform continuity of the condition spectrum map is obtained in the domain of normal matrices.
By using methods of subordinacy theory, we study packing continuity properties of spectral measures of discrete one-dimensional Schrödinger operators acting on the whole line. Then we apply these methods to Sturmian operators with rotation numbers of quasibounded density to show that they have purely $\unicode[STIX]{x1D6FC}$-packing continuous spectrum. A dimensional stability result is also mentioned.
In this paper, we introduce two notions of a relative operator (α, β)-entropy and a Tsallis relative operator (α, β)-entropy as two parameter extensions of the relative operator entropy and the Tsallis relative operator entropy. We apply a perspective approach to prove the joint convexity or concavity of these new notions, under certain conditions concerning α and β. Indeed, we give the parametric extensions, but in such a manner that they remain jointly convex or jointly concave.
Significance Statement. What is novel here is that we convincingly demonstrate how our techniques can be used to give simple proofs for the old and new theorems for the functions that are relevant to quantum statistics. Our proof strategy shows that the joint convexity of the perspective of some functions plays a crucial role to give simple proofs for the joint convexity (resp. concavity) of some relative operator entropies.
The joint Brown measure and joint Haagerup–Schultz projections for tuples of commuting operators in a von Neumann algebra equipped with a faithful tracial state are investigated, and several natural properties are proved for these. It is shown that the support of the joint Brown measure is contained in the Taylor joint spectrum of the tuple, and also in the ostensibly smaller left Harte spectrum. A simultaneous upper triangularization result for finite commuting tuples is proved, and the joint Brown measure and joint Haagerup–Schultz projections are shown to behave well under the Arens multivariate holomorphic functional calculus of such a commuting tuple.