To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study symmetric and antisymmetric tensor products of Hilbert-space operators, focusing on norms and spectra for some well-known classes favored by function-theoretic operator theorists. We pose many open questions that should interest the field.
We improve and expand in two directions the theory of norms on complex matrices induced by random vectors. We first provide a simple proof of the classification of weakly unitarily invariant norms on the Hermitian matrices. We use this to extend the main theorem in Chávez, Garcia, and Hurley (2023, Canadian Mathematical Bulletin 66, 808–826) from exponent $d\geq 2$ to $d \geq 1$. Our proofs are much simpler than the originals: they do not require Lewis’ framework for group invariance in convex matrix analysis. This clarification puts the entire theory on simpler foundations while extending its range of applicability.
We prove that for a homogeneous linear partial differential operator $\mathcal {A}$ of order $k \le 2$ and an integrable map $f$ taking values in the essential range of that operator, there exists a function $u$ of special bounded variation satisfying
This extends a result of G. Alberti for gradients on $\mathbf {R}^N$. In particular, for $0 \le m < N$, it is shown that every integrable $m$-vector field is the absolutely continuous part of the boundary of a normal $(m+1)$-current.
Let $H^{\infty}(\Omega,X)$ be the space of bounded analytic functions $f(z)=\sum_{n=0}^{\infty} x_{n}z^{n}$ from a proper simply connected domain Ω containing the unit disk $\mathbb{D}:=\{z\in \mathbb{C}:|z| \lt 1\}$ into a complex Banach space X with $\left\lVert f\right\rVert_{H^{\infty}(\Omega,X)} \leq 1$. Let $\phi=\{\phi_{n}(r)\}_{n=0}^{\infty}$ with $\phi_{0}(r)\leq 1$ such that $\sum_{n=0}^{\infty} \phi_{n}(r)$ converges locally uniformly with respect to $r \in [0,1)$. For $1\leq p,q \lt \infty$, we denote
In this article, we extensively study the Bohr radius $R_{p,q,\phi}(\Omega,X)$, when X is an arbitrary Banach space, and $X=\mathcal{B}(\mathcal{H})$ is the algebra of all bounded linear operators on a complex Hilbert space $\mathcal{H}$. Furthermore, we establish the Bohr inequality for the operator-valued Cesáro operator and Bernardi operator.
for several extended essential spectra $\widetilde {\sigma }_i$. In this work, we extend such theorems for the regularized functional calculus introduced by Haase [10, 11] assuming suitable conditions on $f$. At the same time, we answer in the positive a question made by Haase [11, Remark 5.4] regarding the conditions on $f$ which are sufficient to obtain the spectral mapping theorem for the usual extended spectrum $\widetilde \sigma$. We use the model case of bisectorial-like operators, although the proofs presented here are generic, and are valid for similar functional calculi.
We revisit tensor algebras of subproduct systems with Hilbert space fibers, resolving some open questions in the case of infinite-dimensional fibers. We characterize when a tensor algebra can be identified as the algebra of uniformly continuous noncommutative functions on a noncommutative homogeneous variety or, equivalently, when it is residually finite-dimensional: this happens precisely when the closed homogeneous ideal associated with the subproduct system satisfies a Nullstellensatz with respect to the algebra of uniformly continuous noncommutative functions on the noncommutative closed unit ball. We show that – in contrast to the finite-dimensional case – in the case of infinite-dimensional fibers, this Nullstellensatz may fail. Finally, we also resolve the isomorphism problem for tensor algebras of subproduct systems: two such tensor algebras are (isometrically) isomorphic if and only if their subproduct systems are isomorphic in an appropriate sense.
In this paper, we mainly investigate the well-posedness of the four-order degenerate differential equation ($P_4$): $(Mu)''''(t) + \alpha (Lu)'''(t) + (Lu)''(t)$$=\beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t),\,( t\in [0,\,2\pi ])$ in periodic Lebesgue–Bochner spaces $L^p(\mathbb {T}; X)$ and periodic Besov spaces $B_{p,q}^s\;(\mathbb {T}; X)$, where $A$, $B$, $L$ and $M$ are closed linear operators on a Banach space $X$ such that $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\,\beta,\,\gamma \in \mathbb {C}$, $G$ and $F$ are bounded linear operators from $L^p([-2\pi,\,0];X)$ (respectively $B_{p,q}^s([-2\pi,\,0];X)$) into $X$, $u_t(\cdot ) = u(t+\cdot )$ and $u'_t(\cdot ) = u'(t+\cdot )$ are defined on $[-2\pi,\,0]$ for $t\in [0,\, 2\pi ]$. We completely characterize the well-posedness of ($P_4$) in the above two function spaces by using known operator-valued Fourier multiplier theorems.
In this article, the question of whether the Löwner partial order on the positive cone of an operator algebra is determined by the norm of any arbitrary Kubo–Ando mean is studied. The question was affirmatively answered for certain classes of Kubo–Ando means, yet the general case was left as an open problem. We here give a complete answer to this question, by showing that the norm of every symmetric Kubo–Ando mean is order-determining, i.e., if $A,B\in \mathcal B(H)^{++}$ satisfy $\Vert A\sigma X\Vert \le \Vert B\sigma X\Vert $ for every $X\in \mathcal {A}^{{++}}$, where $\mathcal A$ is the C*-subalgebra generated by $B-A$ and I, then $A\le B$.
We discuss how countable subadditivity of operators can be derived from subadditivity under mild forms of continuity, and provide examples manifesting such circumstances.
We prove that a finite set of natural numbers J satisfies that $J\cup \{0\}$ is not Sidon if and only if for any operator T, the disjoint hypercyclicity of $\{T^j:j\in J\}$ implies that T is weakly mixing. As an application we show the existence of a non-weakly mixing operator T such that $T\oplus T^2\oplus\cdots \oplus T^n$ is hypercyclic for every n.
In this article, we study the Bohr operator for the operator-valued subordination class $S(f)$ consisting of holomorphic functions subordinate to f in the unit disk $\mathbb {D}:=\{z \in \mathbb {C}: |z|<1\}$, where $f:\mathbb {D} \rightarrow \mathcal {B}(\mathcal {H})$ is holomorphic and $\mathcal {B}(\mathcal {H})$ is the algebra of bounded linear operators on a complex Hilbert space $\mathcal {H}$. We establish several subordination results, which can be viewed as the analogs of a couple of interesting subordination results from scalar-valued settings. We also obtain a von Neumann-type inequality for the class of analytic self-mappings of the unit disk $\mathbb {D}$ which fix the origin. Furthermore, we extensively study Bohr inequalities for operator-valued polyanalytic functions in certain proper simply connected domains in $\mathbb {C}$. We obtain Bohr radius for the operator-valued polyanalytic functions of the form $F(z)= \sum _{l=0}^{p-1} \overline {z}^l \, f_{l}(z) $, where $f_{0}$ is subordinate to an operator-valued convex biholomorphic function, and operator-valued starlike biholomorphic function in the unit disk $\mathbb {D}$.
The existence of isometric embedding of $S_q^m$ into $S_p^n$, where $1\leq p\neq q\leq \infty$ and $m,n\geq 2$, has been recently studied in [6]. In this article, we extend the study of isometric embeddability beyond the above-mentioned range of $p$ and $q$. More precisely, we show that there is no isometric embedding of the commutative quasi-Banach space $\ell _q^m(\mathbb {R})$ into $\ell _p^n(\mathbb {R})$, where $(q,p)\in (0,\infty )\times (0,1)$ and $p\neq q$. As non-commutative quasi-Banach spaces, we show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in (0,2)\setminus \{1\}\times (0,1)$$\cup \, \{1\}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$$\cup \, \{\infty \}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$ and $p\neq q$. Moreover, in some restrictive cases, we also show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in [2, \infty )\times (0,1)$. A new tool in our paper is the non-commutative Clarkson's inequality for Schatten class operators. Other tools involved are the Kato–Rellich theorem and multiple operator integrals in perturbation theory, followed by intricate computations involving power-series analysis.
In this paper, we introduce the spherical polar decomposition of the linear pencil of an ordered pair $\mathbf {T}=(T_{1},T_{2})$ and investigate nontrivial invariant subspaces between the generalized spherical Aluthge transform of the linear pencil of $\mathbf {T}$ and the linear pencil of the original pair $\mathbf {T}$ of bounded operators with dense ranges.
By defining and applying the restricted topology, we have investigated certain connections between the boundary spectrum, the exponential spectrum, the topological boundary of the spectrum and the connected hull of the spectrum (see Mouton and Harte [‘Linking the boundary and exponential spectra via the restricted topology’, J. Math. Anal. Appl.454 (2017), 730–745]). We now solve a remaining problem regarding the restricted connected hull.
Using probabilistic tools, we prove that any weak* continuous semigroup $(T_t)_{t \geqslant 0}$ of self-adjoint unital completely positive measurable Schur multipliers acting on the space $\mathrm {B}({\mathrm {L}}^2(X))$ of bounded operators on the Hilbert space ${\mathrm {L}}^2(X)$, where X is a suitable measure space, can be dilated by a weak* continuous group of Markov $*$-automorphisms on a bigger von Neumann algebra. We also construct a Markov dilation of these semigroups. Our results imply the boundedness of the McIntosh’s ${\mathrm {H}}^\infty $ functional calculus of the generators of these semigroups on the associated Schatten spaces and some interpolation results connected to ${\mathrm {BMO}}$-spaces. We also give an answer to a question of Steen, Todorov, and Turowska on completely positive continuous Schur multipliers.
We consider metrizable ergodic topological dynamical systems over locally compact, $\sigma $-compact abelian groups. We study pure point spectrum via suitable notions of almost periodicity for the points of the dynamical system. More specifically, we characterize pure point spectrum via mean almost periodicity of generic points. We then go on and show how Besicovitch almost periodic points determine both eigenfunctions and the measure in this case. After this, we characterize those systems arising from Weyl almost periodic points and use this to characterize weak and Bohr almost periodic systems. Finally, we consider applications to aperiodic order.
Motivated by the near invariance of model spaces for the backward shift, we introduce a general notion of $(X,Y)$-invariant operators. The relations between this class of operators and the near invariance properties of their kernels are studied. Those lead to orthogonal decompositions for the kernels, which generalize well-known orthogonal decompositions of model spaces. Necessary and sufficient conditions for those kernels to be nearly X-invariant are established. This general approach can be applied to a wide class of operators defined as compressions of multiplication operators, in particular to Toeplitz operators and truncated Toeplitz operators, to study the invariance properties of their kernels (general Toeplitz kernels).
We characterize model polynomials that are cyclic in Dirichlet-type spaces in the unit ball of $\mathbb C^n$, and we give a sufficient capacity condition in order to identify noncyclic vectors.
We study a class of left-invertible operators which we call weakly concave operators. It includes the class of concave operators and some subclasses of expansive strict $m$-isometries with $m > 2$. We prove a Wold-type decomposition for weakly concave operators. We also obtain a Berger–Shaw-type theorem for analytic finitely cyclic weakly concave operators. The proofs of these results rely heavily on a spectral dichotomy for left-invertible operators. It provides a fairly close relationship, written in terms of the reciprocal automorphism of the Riemann sphere, between the spectra of a left-invertible operator and any of its left inverses. We further place the class of weakly concave operators, as the term $\mathcal {A}_1$, in the chain $\mathcal {A}_0 \subseteq \mathcal {A}_1 \subseteq \ldots \subseteq \mathcal {A}_{\infty }$ of collections of left-invertible operators. We show that most of the aforementioned results can be proved for members of these classes. Subtleties arise depending on whether the index $k$ of the class $\mathcal {A}_k$ is finite or not. In particular, a Berger–Shaw-type theorem fails to be true for members of $\mathcal {A}_{\infty }$. This discrepancy is better revealed in the context of $C^*$- and $W^*$-algebras.