Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-26T17:48:55.178Z Has data issue: false hasContentIssue false

On isometric embeddability of $S_q^m$ into $S_p^n$ as non-commutative quasi-Banach spaces

Published online by Cambridge University Press:  22 June 2023

Arup Chattopadhyay
Affiliation:
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039, India (arupchatt@iitg.ac.in, 2003arupchattopadhyay@gmail.com)
Guixiang Hong
Affiliation:
Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China (gxhong@hit.edu.cn)
Chandan Pradhan
Affiliation:
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039, India (chandan.math@iitg.ac.in, chandan.pradhan2108@gmail.com)
Samya Kumar Ray
Affiliation:
Stat-Math Unit, Indian Statistical Institute, Kolkata 700108, India (samyaray7777@gmail.com)

Abstract

The existence of isometric embedding of $S_q^m$ into $S_p^n$, where $1\leq p\neq q\leq \infty$ and $m,n\geq 2$, has been recently studied in [6]. In this article, we extend the study of isometric embeddability beyond the above-mentioned range of $p$ and $q$. More precisely, we show that there is no isometric embedding of the commutative quasi-Banach space $\ell _q^m(\mathbb {R})$ into $\ell _p^n(\mathbb {R})$, where $(q,p)\in (0,\infty )\times (0,1)$ and $p\neq q$. As non-commutative quasi-Banach spaces, we show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in (0,2)\setminus \{1\}\times (0,1)$ $\cup \, \{1\}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$ $\cup \, \{\infty \}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$ and $p\neq q$. Moreover, in some restrictive cases, we also show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in [2, \infty )\times (0,1)$. A new tool in our paper is the non-commutative Clarkson's inequality for Schatten class operators. Other tools involved are the Kato–Rellich theorem and multiple operator integrals in perturbation theory, followed by intricate computations involving power-series analysis.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arazy, J.. The isometries of $C_p$. Isr. J. Math. 22 (1975), 247256.10.1007/BF02761592CrossRefGoogle Scholar
Ball, K., Carlen, E. A. and Lieb, E. H.. Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115 (1994), 463482.10.1007/BF01231769CrossRefGoogle Scholar
Banach, S.. Théorie des opérations linéaires (French) [Theory of linear operators]. Reprint of the 1932 original, pp. iv+128 (Sceaux: Èditions Jacques Gabay, 1993).Google Scholar
Baumgärtel, H.. Analytic perturbation theory for matrices and operators. Operator Theory: Advances and Applications, Vol. 15, p. 427 (Birkhäuser Verlag, Basel, 1985).10.1515/9783112721810CrossRefGoogle Scholar
Bretagnolle, J., Dacunha-Castelle, D. and Krivine, J. L.. Lois stables et espaces $L^p$ (French). Symposium on Probability Methods in Analysis (Loutraki, 1966), pp. 48–54 (Springer, Berlin, 1967).10.1007/BFb0061106CrossRefGoogle Scholar
Chattopadhyay, A., Hong, G., Pal, A., Pradhan, C. and Ray, S. K.. Isometric embeddability of $S_q^m$ into $S_p^n$. J. Funct. Anal. 282 (2022), 109281.10.1016/j.jfa.2021.109281CrossRefGoogle Scholar
Delbaen, F., Jarchow, H. and Pełczyński, A.. Subspaces of $L_p$ isometric to subspaces of $l_p$. Positivity 2 (1998), 339367.10.1023/A:1009764511096CrossRefGoogle Scholar
Fleming, R. J. and Jamison, J. E.. Isometries on Banach spaces: function spaces. Monographs and Surveys in Pure and Applied Mathematics, Vol. 129, pp. x+197 (Chapman & Hall/CRC, Boca Raton, FL, 2003).Google Scholar
Fleming, R. J. and Jamison, J. E.. Isometries on banach spaces: vector-valued function spaces, Vol. 2. Monographs and Surveys in Pure and Applied Mathematics, Vol. 138, pp. x+234 (Chapman & Hall/CRC, Boca Raton, FL, 2008).Google Scholar
Gupta, R. and Reza, M. R.. Operator space structures on $\ell _1(n)$. Houston J. Math. 44 (2018), 12051212.Google Scholar
Haagerup, U., Rosenthal, H. P. and Sukochev, F. A.. Banach embedding properties of non-commutative $L^p$-spaces. Mem. Am. Math. Soc. 163 (2003), vi+68.Google Scholar
Herz, C.. The theory of $p$-spaces with an application to convolution operators. Trans. Am. Math. Soc. 154 (1971), 6982.Google Scholar
Junge, M.. Embeddings of non-commutative $L_p$-spaces into non-commutative $L_1$-spaces, $1< p<2$. Geom. Funct. Anal. 10 (2000), 389406.10.1007/s000390050012CrossRefGoogle Scholar
Junge, M.. Embedding of the operator space $OH$ and the logarithmic ‘little Grothendieck inequality’. Invent. Math. 161 (2005), 225286.10.1007/s00222-004-0421-0CrossRefGoogle Scholar
Junge, M., Nielsen, N. J., Ruan, Z. J. and Xu, Q.. $\mathscr {C}\mathscr {O}\mathscr {L}_p$ spaces—the local structure of non-commutative $L_p$ spaces. Adv. Math. 187 (2004), 257319.10.1016/j.aim.2003.08.010CrossRefGoogle Scholar
Junge, M. and Parcet, J.. Mixed-norm inequalities and operator space $L_p$ embedding theory. Mem. Am. Math. Soc. 203 (2010), vi+155.Google Scholar
Junge, M. and Parcet, J.. Operator space embedding of Schatten $p$-classes into von Neumann algebra preduals. Geom. Funct. Anal. 18 (2008), 522551.10.1007/s00039-008-0660-0CrossRefGoogle Scholar
Junge, M. and Parcet, J.. Rosenthal's theorem for subspaces of noncommutative $L_p$. Duke Math. J. 141 (2008), 75122.10.1215/S0012-7094-08-14112-2CrossRefGoogle Scholar
Junge, M., Ruan, Z. and Sherman, D.. A classification for $2$-isometries of noncommutative $L_p$-spaces. Isr. J. Math. 150 (2005), 285314.10.1007/BF02762384CrossRefGoogle Scholar
Junge, M., Sukochev, F. and Zanin, D.. Embeddings of operator ideals into $\mathcal {L}_p$-spaces on finite von Neumann algebras. Adv. Math. 312 (2017), 473546.10.1016/j.aim.2017.03.031CrossRefGoogle Scholar
Kato, T.. Perturbation theory for linear operators, Reprint of the 1980 Edition, Classics in Mathematics, pp. xxii+619 (Springer-Verlag, Berlin, 1995).10.1007/978-3-642-66282-9CrossRefGoogle Scholar
Koldobsky, A. and König, H.. Aspects of the isometric theory of Banach spaces. Handbook of the Geometry of Banach Spaces, Vol. I, pp. 899–939 (North-Holland, Amsterdam, 2001).10.1016/S1874-5849(01)80023-1CrossRefGoogle Scholar
Kosaki, H.. Applications of uniform convexity of noncommutative $L^p$-spaces. Trans. Am. Math. Soc. 283 (1984), 265282.Google Scholar
Lamperti, J.. On the isometries of certain function-spaces. Pac. J. Math. 8 (1958), 459466.10.2140/pjm.1958.8.459CrossRefGoogle Scholar
Lev́y, P.. Théorie de l'addition des variables aléatoires [combination theory of unpredictable variables]. Monographies des Probabilités, Vol. 1 (Gauthier-Villars, Paris, 1937).Google Scholar
Lyubich, Y. I.. Upper bound for isometric embeddings $\ell _2^m\to \ell _p^n$. Proc. Am. Math. Soc. 136 (2008), 39533956.10.1090/S0002-9939-08-09377-5CrossRefGoogle Scholar
Lyubich, Y. I.. Lower bounds for projective designs, cubature formulas and related isometric embeddings. Eur. J. Comb. 30 (2009), 841852.10.1016/j.ejc.2008.08.001CrossRefGoogle Scholar
Lyubich, Y. I. and Shatalova, O. A.. Euclidean subspaces of the complex spaces $l^n_p$ constructed by orbits of finite subgroups of ${\rm SU}(m)$. Geom. Dedicata 86 (2001), 169178.10.1023/A:1011905900415CrossRefGoogle Scholar
Lyubich, Y. I. and Shatalova, O. A.. Isometric embeddings of finite-dimensional $l_p$-spaces over the quaternions. Algebra Anal. 16 (2004), 1532. reprinted in St. Petersburg Math. J. 16 (2005), 9–24.Google Scholar
Lyubich, Y. I. and Vaserstein, L. N.. Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs. Geom. Dedicata 47 (1993), 327362.10.1007/BF01263664CrossRefGoogle Scholar
McCarthy, C. A.. $c_p$. Isr. J. Math. 5 (1967), 249271.10.1007/BF02771613CrossRefGoogle Scholar
Pisier, G.. The operator Hilbert space OH and type III von Neumann algebras. Bull. London Math. Soc. 36 (2004), 455459.10.1112/S002460930400311XCrossRefGoogle Scholar
Potapov, D., Skripka, A. and Sukochev, F.. Spectral shift function of higher order. Invent. Math. 193 (2013), 501538.10.1007/s00222-012-0431-2CrossRefGoogle Scholar
Potapov, D., Skripka, A. and Sukochev, F.. On Hilbert-Schmidt compatibility. Oper. Matrices 7 (2013), 133.10.7153/oam-07-01CrossRefGoogle Scholar
Potapov, D. and Sukochev, F.. Fréchet differentiability of $\mathcal {S}^p$ norms. Adv. Math. 262 (2014), 436475.10.1016/j.aim.2014.05.011CrossRefGoogle Scholar
Randrianantoanina, N.. Embeddings of non-commutative $L_p$-spaces into preduals of finite von Neumann algebras. Isr. J. Math. 163 (2008), 127.10.1007/s11856-008-0001-xCrossRefGoogle Scholar
Ray, S. K.. On isometric embedding $\ell ^m_p\to S_\infty$ and unique operator space structure. Bull. London Math. Soc. 52 (2020), 437447.10.1112/blms.12336CrossRefGoogle Scholar
Raynaud, Y. and Xu, Q.. On subspaces of non-commutative $L_p$-spaces. J. Funct. Anal. 203 (2003), 149196.10.1016/S0022-1236(03)00045-4CrossRefGoogle Scholar
Rellich, F.. Perturbation theory of eigenvalue problems. Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz, pp. x+127 (Gordon and Breach Science Publishers, New York-London-Paris, 1969).Google Scholar
Richard, E. and Quanhua, X.. A noncommutative martingale convexity inequality. Ann. Probab. 44 (2016), 867882.Google Scholar
Rosenthal, H. P.. On subspaces of $L^p$. Ann. Math. 97 (1973), 344373.10.2307/1970850CrossRefGoogle Scholar
Schoenberg, I. J.. Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44 (1938), 522536.10.1090/S0002-9947-1938-1501980-0CrossRefGoogle Scholar
Skripka, A. and Tomskova, A.. Multilinear operator integrals, theory and applications. Lecture Notes in Mathematics, Vol. 2250, pp. xi+190 (Springer, Cham, 2019).10.1007/978-3-030-32406-3CrossRefGoogle Scholar
Sukochev, F. A. and Xu, Q.. Embedding of non-commutative $L^p$-spaces: $p<1$. Arch. Math. (Basel) 80 (2003), 151164.10.1007/s00013-003-0461-5CrossRefGoogle Scholar
Xu, Q.. Embedding of $C_q$ and $R_q$ into noncommutative $L_p$-spaces, $1\leq p< q\leq 2$. Math. Ann. 335 (2006), 109131.10.1007/s00208-005-0732-5CrossRefGoogle Scholar
Yeadon, F. J.. Isometries of noncommutative $L^p$-spaces. Math. Proc. Cambridge Philos. Soc. 90 (1981), 4150.10.1017/S0305004100058515CrossRefGoogle Scholar
Zhang, H.. Optimal $2$-uniform convexity of Schatten classes revisited. Preprint arXiv:2011.00354 (2020).Google Scholar