To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider an eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary conditions. The location of eigenvalues on real axis, the structure of root subspaces and the oscillation properties of eigenfunctions of this problem are investigated, and asymptotic formulas for the eigenvalues and eigenfunctions are found. Next, by the use of these properties, we establish sufficient conditions for subsystems of root functions of the considered problem to form a basis in the space $L_p,1 < p < \infty$.
We establish a Wold-type decomposition for isometric and isometric Nica-covariant representations of the odometer semigroup. These generalize the Wold-type decomposition for commuting pairs of isometries due to Popovici and for pairs of doubly commuting isometries due to Słociński.
We study super weakly compact operators through a quantitative method. We introduce a semi-norm $\sigma (T)$ of an operator $T:X\to Y$, where X, Y are Banach spaces, the so-called measure of super weak noncompactness, which measures how far T is from the family of super weakly compact operators. We study the equivalence of the measure $\sigma (T)$ and the super weak essential norm of T. We prove that Y has the super weakly compact approximation property if and and only if these two semi-norms are equivalent. As an application, we construct an example to show that the measures of T and its dual $T^*$ are not always equivalent. In addition we give some sequence spaces as examples of Banach spaces having the super weakly compact approximation property.
In the first part of the paper, we use states on $C^{*}$-algebras in order to establish some equivalent statements to equality in the triangle inequality, as well as to the parallelogram identity for elements of a pre-Hilbert $C^{*}$-module. We also characterize the equality case in the triangle inequality for adjointable operators on a Hilbert $C^{*}$-module. Then we give certain necessary and sufficient conditions to the Pythagoras identity for two vectors in a pre-Hilbert $C^{*}$-module under the assumption that their inner product has a negative real part. We introduce the concept of Pythagoras orthogonality and discuss its properties. We describe this notion for Hilbert space operators in terms of the parallelogram law and some limit conditions. We present several examples in order to illustrate the relationship between the Birkhoff–James, Roberts, and Pythagoras orthogonalities, and the usual orthogonality in the framework of Hilbert $C^{*}$-modules.
We continue our investigation of the real space H of Hermitian matrices in $${M_n}(\mathbb{C})$$ with respect to norms on $${\mathbb{C}^n}$$. We complete the commutative case by showing that any proper real subspace of the real diagonal matrices on $${\mathbb{C}^n}$$ can appear as H. For the non-commutative case, we give a complete solution when n=3 and we provide various illustrative examples for n ≥ 4. We end with a short list of problems.
The notions of chaos and frequent hypercyclicity enjoy an intimate relationship in linear dynamics. Indeed, after a series of partial results, it was shown by Bayart and Ruzsa in 2015 that for backward weighted shifts on $\ell _p(\mathbb {Z})$, the notions of chaos and frequent hypercyclicity coincide. It is with some effort that one shows that these two notions are distinct. Bayart and Grivaux in 2007 constructed a non-chaotic frequently hypercyclic weighted shift on $c_0$. It was only in 2017 that Menet settled negatively whether every chaotic operator is frequently hypercylic. In this article, we show that for a large class of composition operators on $L^{p}$-spaces, the notions of chaos and frequent hypercyclicity coincide. Moreover, in this particular class, an invertible operator is frequently hypercyclic if and only if its inverse is frequently hypercyclic. This is in contrast to a very recent result of Menet where an invertible operator frequently hypercyclic on $\ell _1$ whose inverse is not frequently hypercyclic is constructed.
Let $T = (T_1, \ldots , T_n)$ be a commuting tuple of bounded linear operators on a Hilbert space $\mathcal{H}$. The multiplicity of $T$ is the cardinality of a minimal generating set with respect to $T$. In this paper, we establish an additive formula for multiplicities of a class of commuting tuples of operators. A special case of the main result states the following: Let $n \geq 2$, and let $\mathcal{Q}_i$, $i = 1, \ldots , n$, be a proper closed shift co-invariant subspaces of the Dirichlet space or the Hardy space over the unit disc in $\mathbb {C}$. If $\mathcal{Q}_i^{\bot }$, $i = 1, \ldots , n$, is a zero-based shift invariant subspace, then the multiplicity of the joint $M_{\textbf {z}} = (M_{z_1}, \ldots , M_{z_n})$-invariant subspace $(\mathcal{Q}_1 \otimes \cdots \otimes \mathcal{Q}_n)^{\perp }$ of the Dirichlet space or the Hardy space over the unit polydisc in $\mathbb {C}^{n}$ is given by
Let A and $\tilde A$ be unbounded linear operators on a Hilbert space. We consider the following problem. Let the spectrum of A lie in some horizontal strip. In which strip does the spectrum of $\tilde A$ lie, if A and $\tilde A$ are sufficiently ‘close’? We derive a sharp bound for the strip containing the spectrum of $\tilde A$, assuming that $\tilde A-A$ is a bounded operator and A has a bounded Hermitian component. We also discuss applications of our results to regular matrix differential operators.
In this paper, we study the principal spectral theory of age-structured models with random diffusion. First, we provide an equivalent characteristic for the principal eigenvalue, the strong maximum principle and a positive strict super-solution. Then, we use the result to investigate the effects of diffusion rate on the principal eigenvalue. Finally, we study how the principal eigenvalue affects the global dynamics of the KPP model and verify that the principal eigenvalue being zero is a critical value.
where \[{\text{c}}(k,X)\] stands for the best constant \[C > 0\] such that \[\mathop P\limits^ \vee \leqslant CP\] for every k-homogeneous polynomial \[P \in \mathcal{P}{(^k}X)\]. We show that if X is a finite dimensional complex space then \[{\text{c}}(X) = 1\]. We derive some consequences of this fact regarding the convergence of analytic functions on such spaces.
The result is no longer true in the real setting. Here we relate this constant with the so-called Bochnak’s complexification procedure.
We also study some other properties connected with polarization. Namely, we provide necessary conditions related to the geometry of X for \[c(2,X) = 1\] to hold. Additionally we link polarization constants with certain estimates of the nuclear norm of the product of polynomials.
The purpose of this paper is twofold: we present some matrix inequalities of log-majorization type for eigenvalues indexed by a sequence; we then apply our main theorem to generalize and improve the Hua–Marcus’ inequalities. Our results are stronger and more general than the existing ones.
We establish Bohr inequalities for operator-valued functions, which can be viewed as analogues of a couple of interesting results from scalar-valued settings. Some results of this paper are motivated by the classical flavour of Bohr inequality, while others are based on a generalized concept of the Bohr radius problem.
For arbitrary closed countable subsets Z of the unit circle examples of topologically mixing operators on Hilbert spaces are given which have a densely spanning set of eigenvectors with unimodular eigenvalues restricted to Z. In particular, these operators cannot be ergodic in the Gaussian sense.
Bayart and Ruzsa [Difference sets and frequently hypercyclic weighted shifts. Ergod. Th. & Dynam. Sys.35 (2015), 691–709] have recently shown that every frequently hypercyclic weighted shift on $\ell ^p$ is chaotic. This contrasts with an earlier result of Bayart and Grivaux [Frequently hypercyclic operators. Trans. Amer. Math. Soc.358 (2006), 5083–5117], who constructed a non-chaotic frequently hypercyclic weighted shift on $c_0$. We first generalize the Bayart–Ruzsa theorem to all Banach sequence spaces in which the unit sequences form a boundedly complete unconditional basis. We then study the relationship between frequent hypercyclicity and chaos for weighted shifts on Fréchet sequence spaces, in particular, on Köthe sequence spaces, and then on the special class of power series spaces. We obtain, rather curiously, that every frequently hypercyclic weighted shift on $H(\mathbb {D})$ is chaotic, while $H(\mathbb {C})$ admits a non-chaotic frequently hypercyclic weighted shift.
In this paper we consider the following problem: let Xk, be a Banach space with a normalised basis (e(k, j))j, whose biorthogonals are denoted by ${(e_{(k,j)}^*)_j}$, for $k\in\N$, let $Z=\ell^\infty(X_k:k\kin\N)$ be their l∞-sum, and let $T:Z\to Z$ be a bounded linear operator with a large diagonal, i.e.,
Under which condition does the identity on Z factor through T? The purpose of this paper is to formulate general conditions for which the answer is positive.
Quasiperiodic media is a class of almost periodic media which is generated from periodic media through a ‘cut and project’ procedure. Quasiperiodic media displays some extraordinary optical, electronic and conductivity properties which call for the development of methods to analyse their microstructures and effective behaviour. In this paper, we develop the method of Bloch wave homogenisation for quasiperiodic media. Bloch waves are typically defined through a direct integral decomposition of periodic operators. A suitable direct integral decomposition is not available for almost periodic operators. To remedy this, we lift a quasiperiodic operator to a degenerate periodic operator in higher dimensions. Approximate Bloch waves are obtained for a regularised version of the degenerate operator. Homogenised coefficients for quasiperiodic media are obtained from the first Bloch eigenvalue of the regularised operator in the limit of regularisation parameter going to zero. A notion of quasiperiodic Bloch transform is defined and employed to obtain homogenisation limit for an equation with highly oscillating quasiperiodic coefficients.
In the present paper, we deal with asymptotical stability of Markov operators acting on abstract state spaces (i.e. an ordered Banach space, where the norm has an additivity property on the cone of positive elements). Basically, we are interested in the rate of convergence when a Markov operator T satisfies the uniform P-ergodicity, i.e. $\|T^n-P\|\to 0$, here P is a projection. We have showed that T is uniformly P-ergodic if and only if $\|T^n-P\|\leq C\beta^n$, $0<\beta<1$. In this paper, we prove that such a β is characterized by the spectral radius of T − P. Moreover, we give Deoblin’s kind of conditions for the uniform P-ergodicity of Markov operators.