To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study competing first passage percolation on graphs generated by the configuration model with infinite-mean degrees. Initially, two uniformly chosen vertices are infected with a type 1 and type 2 infection, respectively, and the infection then spreads via nearest neighbors in the graph. The time it takes for the type 1 (resp. 2) infection to traverse an edge e is given by a random variable $X_1(e)$ (resp. $X_2(e)$) and, if the vertex at the other end of the edge is still uninfected, it then becomes type 1 (resp. 2) infected and immune to the other type. Assuming that the degrees follow a power-law distribution with exponent $\tau \in (1,2)$, we show that with high probability as the number of vertices tends to infinity, one of the infection types occupies all vertices except for the starting point of the other type. Moreover, both infections have a positive probability of winning regardless of the passage-time distribution. The result is also shown to hold for the erased configuration model, where self-loops are erased and multiple edges are merged, and when the degrees are conditioned to be smaller than $n^\alpha$ for some $\alpha\gt 0$.
We prove a new sufficient pair degree condition for tight Hamiltonian cycles in $3$-uniform hypergraphs that (asymptotically) improves the best known pair degree condition due to Rödl, Ruciński, and Szemerédi. For graphs, Chvátal characterised all those sequences of integers for which every pointwise larger (or equal) degree sequence guarantees the existence of a Hamiltonian cycle. A step towards Chvátal’s theorem was taken by Pósa, who improved on Dirac’s tight minimum degree condition for Hamiltonian cycles by showing that a certain weaker condition on the degree sequence of a graph already yields a Hamiltonian cycle.
In this work, we take a similar step towards a full characterisation of all pair degree matrices that ensure the existence of tight Hamiltonian cycles in $3$-uniform hypergraphs by proving a $3$-uniform analogue of Pósa’s result. In particular, our result strengthens the asymptotic version of the result by Rödl, Ruciński, and Szemerédi.
We extend the notion of universal graphs to a geometric setting. A geometric graph is universal for a class $\mathcal H$ of planar graphs if it contains an embedding, that is, a crossing-free drawing, of every graph in $\mathcal H$. Our main result is that there exists a geometric graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that is universal for $n$-vertex forests; this generalises a well-known result by Chung and Graham, which states that there exists an (abstract) graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that contains every $n$-vertex forest as a subgraph. The upper bound of $O\!\left(n \log n\right)$ edges cannot be improved, even if more than $n$ vertices are allowed. We also prove that every $n$-vertex convex geometric graph that is universal for $n$-vertex outerplanar graphs has a near-quadratic number of edges, namely $\Omega _h(n^{2-1/h})$, for every positive integer $h$; this almost matches the trivial $O(n^2)$ upper bound given by the $n$-vertex complete convex geometric graph. Finally, we prove that there exists an $n$-vertex convex geometric graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that is universal for $n$-vertex caterpillars.
A chordal graph is a graph with no induced cycles of length at least $4$. Let $f(n,m)$ be the maximal integer such that every graph with $n$ vertices and $m$ edges has a chordal subgraph with at least $f(n,m)$ edges. In 1985 Erdős and Laskar posed the problem of estimating $f(n,m)$. In the late 1980s, Erdős, Gyárfás, Ordman and Zalcstein determined the value of $f(n,n^2/4+1)$ and made a conjecture on the value of $f(n,n^2/3+1)$. In this paper we prove this conjecture and answer the question of Erdős and Laskar, determining $f(n,m)$ asymptotically for all $m$ and exactly for $m \leq n^2/3+1$.
For a fixed infinite graph $H$, we study the largest density of a monochromatic subgraph isomorphic to $H$ that can be found in every two-colouring of the edges of $K_{\mathbb{N}}$. This is called the Ramsey upper density of $H$ and was introduced by Erdős and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs $H$ up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of $H$, the number of components of $H$ and the expansion ratio $|N(I)|/|I|$ of the independent sets of $H$.
The notion of cross-intersecting set pair system of size $m$, $ (\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m )$ with $A_i\cap B_i=\emptyset$ and $A_i\cap B_j\ne \emptyset$, was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result states that $m\le\binom{a+b}{a}$ if $|A_i|\le a$ and $|B_i|\le b$ for each $i$. Our central problem is to see how this bound changes with the additional condition $|A_i\cap B_j|=1$ for $i\ne j$. Such a system is called $1$-cross-intersecting. We show that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove that their maximum size is
at least $5^{n/2}$ for $n$ even, $a=b=n$,
equal to $\bigl (\lfloor \frac{n}{2}\rfloor +1\bigr )\bigl (\lceil \frac{n}{2}\rceil +1\bigr )$ if $a=2$ and $b=n\ge 4$,
at most $|\cup _{i=1}^m A_i|$,
asymptotically $n^2$ if $\{A_i\}$ is a linear hypergraph ($|A_i\cap A_j|\le 1$ for $i\ne j$),
asymptotically ${1\over 2}n^2$ if $\{A_i\}$ and $\{B_i\}$ are both linear hypergraphs.
The $c_2$ invariant is an arithmetic graph invariant related to quantum field theory. We give a relation modulo p between the $c_2$ invariant at p and the $c_2$ invariant at $p^s$ by proving a relation modulo p between certain coefficients of powers of products of particularly nice polynomials. The relation at the level of the $c_2$ invariant provides evidence for a conjecture of Schnetz.
Given a graph $G$ and an integer $\ell \ge 2$, we denote by $\alpha _{\ell }(G)$ the maximum size of a $K_{\ell }$-free subset of vertices in $V(G)$. A recent question of Nenadov and Pehova asks for determining the best possible minimum degree conditions forcing clique-factors in $n$-vertex graphs $G$ with $\alpha _{\ell }(G) = o(n)$, which can be seen as a Ramsey–Turán variant of the celebrated Hajnal–Szemerédi theorem. In this paper we find the asymptotical sharp minimum degree threshold for $K_r$-factors in $n$-vertex graphs $G$ with $\alpha _\ell (G)=n^{1-o(1)}$ for all $r\ge \ell \ge 2$.
A random two-cell embedding of a given graph $G$ is obtained by choosing a random local rotation around every vertex. We analyse the expected number of faces of such an embedding, which is equivalent to studying its average genus. In 1991, Stahl [5] proved that the expected number of faces in a random embedding of an arbitrary graph of order $n$ is at most $n\log (n)$. While there are many families of graphs whose expected number of faces is $\Theta (n)$, none are known where the expected number would be super-linear. This led the authors of [1] to conjecture that there is a linear upper bound. In this note we confirm their conjecture by proving that for any $n$-vertex multigraph, the expected number of faces in a random two-cell embedding is at most $2n\log (2\mu )$, where $\mu$ is the maximum edge-multiplicity. This bound is best possible up to a constant factor.
Consider a set of n vertices, where each vertex has a location in $\mathbb{R}^d$ that is sampled uniformly from the unit cube in $\mathbb{R}^d$, and a weight associated to it. Construct a random graph by placing edges independently for each vertex pair with a probability that is a function of the distance between the locations and the vertex weights.
Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $\mathbb{R}^d$ with vertex locations given by a homogeneous Poisson point process, having weights which are independent and identically distributed copies of limiting vertex weights. Our set-up covers many sparse geometric random graph models from the literature, including geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs, continuum scale-free percolation, and weight-dependent random connection models.
We prove that the limiting degree distribution is mixed Poisson and the typical degree sequence is uniformly integrable, and we obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting.
What is the probability that a random UHF algebra is of infinite type? What is the probability that a random simple AI algebra has at most k extremal traces? What is the expected value of the radius of comparison of a random Villadsen-type AH algebra? What is the probability that such an algebra is $\mathcal{Z}$-stable? What is the probability that a random Cuntz–Krieger algebra is purely infinite and simple, and what can be said about the distribution of its K-theory? By constructing $\mathrm{C}^*$-algebras associated with suitable random (walks on) graphs, we provide context in which these are meaningful questions with computable answers.
Two ensembles are frequently used to model random graphs subject to constraints: the microcanonical ensemble (= hard constraint) and the canonical ensemble (= soft constraint). It is said that breaking of ensemble equivalence (BEE) occurs when the specific relative entropy of the two ensembles does not vanish as the size of the graph tends to infinity. Various examples have been analysed in the literature. It was found that BEE is the rule rather than the exception for two classes of constraints: sparse random graphs when the number of constraints is of the order of the number of vertices, and dense random graphs when there are two or more constraints that are frustrated. We establish BEE for a third class: dense random graphs with a single constraint on the density of a given simple graph. We show that BEE occurs in a certain range of choices for the density and the number of edges of the simple graph, which we refer to as the BEE-phase. We also show that, in part of the BEE-phase, there is a gap between the scaling limits of the averages of the maximal eigenvalue of the adjacency matrix of the random graph under the two ensembles, a property that is referred to as the spectral signature of BEE. We further show that in the replica symmetric region of the BEE-phase, BEE is due to the coexistence of two densities in the canonical ensemble.
Given a sequence $\boldsymbol {k} := (k_1,\ldots ,k_s)$ of natural numbers and a graph G, let $F(G;\boldsymbol {k})$ denote the number of colourings of the edges of G with colours $1,\dots ,s$, such that, for every $c \in \{1,\dots ,s\}$, the edges of colour c contain no clique of order $k_c$. Write $F(n;\boldsymbol {k})$ to denote the maximum of $F(G;\boldsymbol {k})$ over all graphs G on n vertices. This problem was first considered by Erdős and Rothschild in 1974, but it has been solved only for a very small number of nontrivial cases. In previous work with Pikhurko and Yilma, (Math. Proc. Cambridge Phil. Soc. 163 (2017), 341–356), we constructed a finite optimisation problem whose maximum is equal to the limit of $\log _2 F(n;\boldsymbol {k})/{n\choose 2}$ as n tends to infinity and proved a stability theorem for complete multipartite graphs G.
In this paper, we provide a sufficient condition on $\boldsymbol {k}$ which guarantees a general stability theorem for any graph G, describing the asymptotic structure of G on n vertices with $F(G;\boldsymbol {k}) = F(n;\boldsymbol {k}) \cdot 2^{o(n^2)}$ in terms of solutions to the optimisation problem. We apply our theorem to systematically recover existing stability results as well as all cases with $s=2$. The proof uses a version of symmetrisation on edge-coloured weighted multigraphs.
We introduce the combinatorial notion of a q-factorization graph intended as a tool to study and express results related to the classification of prime simple modules for quantum affine algebras. These are directed graphs equipped with three decorations: a coloring and a weight map on vertices, and an exponent map on arrows (the exponent map can be seen as a weight map on arrows). Such graphs do not contain oriented cycles and, hence, the set of arrows induces a partial order on the set of vertices. In this first paper on the topic, beside setting the theoretical base of the concept, we establish several criteria for deciding whether or not a tensor product of two simple modules is a highest-$\ell $-weight module and use such criteria to prove, for type A, that a simple module whose q-factorization graph has a totally ordered vertex set is prime.
We define smooth notions of concordance and sliceness for spatial graphs. We prove that sliceness of a spatial graph is equivalent to a condition on a set of linking numbers together with sliceness of a link associated with the graph. This generalizes the result of Taniyama for $\theta $-curves.
We study a general model of recursive trees where vertices are equipped with independent weights and at each time-step a vertex is sampled with probability proportional to its fitness function, which is a function of its weight and degree, and connects to $\ell$ new-coming vertices. Under a certain technical assumption, applying the theory of Crump–Mode–Jagers branching processes, we derive formulas for the limiting distributions of the proportion of vertices with a given degree and weight, and proportion of edges with endpoint having a certain weight. As an application of this theorem, we rigorously prove observations of Bianconi related to the evolving Cayley tree (Phys. Rev. E66, paper no. 036116, 2002). We also study the process in depth when the technical condition can fail in the particular case when the fitness function is affine, a model we call ‘generalised preferential attachment with fitness’. We show that this model can exhibit condensation, where a positive proportion of edges accumulates around vertices with maximal weight, or, more drastically, can have a degenerate limiting degree distribution, where the entire proportion of edges accumulates around these vertices. Finally, we prove stochastic convergence for the degree distribution under a different assumption of a strong law of large numbers for the partition function associated with the process.
The Ramsey number $R(F,H)$ is the minimum number N such that any N-vertex graph either contains a copy of F or its complement contains H. Burr in 1981 proved a pleasingly general result that, for any graph H, provided n is sufficiently large, a natural lower bound construction gives the correct Ramsey number involving cycles: $R(C_n,H)=(n-1)(\chi (H)-1)+\sigma (H)$, where $\sigma (H)$ is the minimum possible size of a colour class in a $\chi (H)$-colouring of H. Allen, Brightwell and Skokan conjectured that the same should be true already when $n\geq \lvert H\rvert \chi (H)$.
We improve this 40-year-old result of Burr by giving quantitative bounds of the form $n\geq C\lvert H\rvert \log ^4\chi (H)$, which is optimal up to the logarithmic factor. In particular, this proves a strengthening of the Allen–Brightwell–Skokan conjecture for all graphs H with large chromatic number.
Random walks on graphs are an essential primitive for many randomised algorithms and stochastic processes. It is natural to ask how much can be gained by running $k$ multiple random walks independently and in parallel. Although the cover time of multiple walks has been investigated for many natural networks, the problem of finding a general characterisation of multiple cover times for worst-case start vertices (posed by Alon, Avin, Koucký, Kozma, Lotker and Tuttle in 2008) remains an open problem. First, we improve and tighten various bounds on the stationary cover time when $k$ random walks start from vertices sampled from the stationary distribution. For example, we prove an unconditional lower bound of $\Omega ((n/k) \log n)$ on the stationary cover time, holding for any $n$-vertex graph $G$ and any $1 \leq k =o(n\log n )$. Secondly, we establish the stationary cover times of multiple walks on several fundamental networks up to constant factors. Thirdly, we present a framework characterising worst-case cover times in terms of stationary cover times and a novel, relaxed notion of mixing time for multiple walks called the partial mixing time. Roughly speaking, the partial mixing time only requires a specific portion of all random walks to be mixed. Using these new concepts, we can establish (or recover) the worst-case cover times for many networks including expanders, preferential attachment graphs, grids, binary trees and hypercubes.
Let G be a graph. Assume that to each vertex of a set of vertices $S\subseteq V(G)$ a robot is assigned. At each stage one robot can move to a neighbouring vertex. Then S is a mobile general position set of G if there exists a sequence of moves of the robots such that all the vertices of G are visited while maintaining the general position property at all times. The mobile general position number of G is the cardinality of a largest mobile general position set of G. We give bounds on the mobile general position number and determine exact values for certain common classes of graphs, including block graphs, rooted products, unicyclic graphs, Kneser graphs $K(n,2)$ and line graphs of complete graphs.
We introduce a broad class of multi-hooking networks, wherein multiple copies of a seed are hooked at each step at random locations, and the number of copies follows a predetermined building sequence of numbers. We analyze the degree profile in random multi-hooking networks by tracking two kinds of node degrees—the local average degree of a specific node over time and the global overall average degree in the graph. The former experiences phases and the latter is invariant with respect to the type of building sequence and is somewhat similar to the average degree in the initial seed. We also discuss the expected number of nodes of the smallest degree. Additionally, we study distances in the network through the lens of the average total path length, the average depth of a node, the eccentricity of a node, and the diameter of the graph.