To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain an algorithm computing the Chern–Schwartz–MacPherson (CSM) classes of Schubert cells in a generalized flag manifold $G/B$. In analogy to how the ordinary divided difference operators act on Schubert classes, each CSM class of a Schubert class is obtained by applying certain Demazure–Lusztig-type operators to the CSM class of a cell of dimension one less. These operators define a representation of the Weyl group on the homology of $G/B$. By functoriality, we deduce algorithmic expressions for CSM classes of Schubert cells in any flag manifold $G/P$. We conjecture that the CSM classes of Schubert cells are an effective combination of (homology) Schubert classes, and prove that this is the case in several classes of examples. We also extend our results and conjecture to the torus equivariant setting.
We extend the group-theoretic construction of local models of Pappas and Zhu [Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math. 194 (2013), 147–254] to the case of groups obtained by Weil restriction along a possibly wildly ramified extension. This completes the construction of local models for all reductive groups when $p\geqslant 5$. We show that the local models are normal with special fiber reduced and study the monodromy action on the sheaves of nearby cycles. As a consequence, we prove a conjecture of Kottwitz that the semi-simple trace of Frobenius gives a central function in the parahoric Hecke algebra. We also introduce a notion of splitting model and use this to study the inertial action in the case of an unramified group.
We show that the generic fiber of a family $f:X\rightarrow S$ of smooth $\mathbb{A}^{1}$-ruled affine surfaces always carries an $\mathbb{A}^{1}$-fibration, possibly after a finite extension of the base $S$. In the particular case where the general fibers of the family are irrational surfaces, we establish that up to shrinking $S$, such a family actually factors through an $\mathbb{A}^{1}$-fibration $\unicode[STIX]{x1D70C}:X\rightarrow Y$ over a certain $S$-scheme $Y\rightarrow S$ induced by the MRC-fibration of a relative smooth projective model of $X$ over $S$. For affine threefolds $X$ equipped with a fibration $f:X\rightarrow B$ by irrational $\mathbb{A}^{1}$-ruled surfaces over a smooth curve $B$, the induced $\mathbb{A}^{1}$-fibration $\unicode[STIX]{x1D70C}:X\rightarrow Y$ can also be recovered from a relative minimal model program applied to a smooth projective model of $X$ over $B$.
We study actions of Lie supergroups, in particular, the hitherto elusive notion of orbits through odd (or more general) points. Following categorical principles, we derive a conceptual framework for their treatment and therein prove general existence theorems for the isotropy (or stabiliser) supergroups and orbits through general points. In this setting, we show that the coadjoint orbits always admit a (relative) supersymplectic structure of Kirillov–Kostant–Souriau type. Applying a family version of Kirillov’s orbit method, we decompose the regular representation of an odd Abelian supergroup into an odd direct integral of characters and construct universal families of representations, parametrised by a supermanifold, for two different super variants of the Heisenberg group.
We compute the characters of the simple $\text{GL}$-equivariant holonomic ${\mathcal{D}}$-modules on the vector spaces of general, symmetric, and skew-symmetric matrices. We realize some of these ${\mathcal{D}}$-modules explicitly as subquotients in the pole order filtration associated to the $\text{determinant}/\text{Pfaffian}$ of a generic matrix, and others as local cohomology modules. We give a direct proof of a conjecture of Levasseur in the case of general and skew-symmetric matrices, and provide counterexamples in the case of symmetric matrices. The character calculations are used in subsequent work with Weyman to describe the ${\mathcal{D}}$-module composition factors of local cohomology modules with determinantal and Pfaffian support.
Toric quiver varieties (moduli spaces of quiver representations) are studied. Given a quiver and a weight, there is an associated quasi-projective toric variety together with a canonical embedding into projective space. It is shown that for a quiver with no oriented cycles the homogeneous ideal of this embedded projective variety is generated by elements of degree at most 3. In each fixed dimension d up to isomorphism there are only finitely many d-dimensional toric quiver varieties. A procedure for their classification is outlined.
We consider plane Cremona maps with proper base points and the base ideal generated by the linear system of forms defining the map. The object of this work is to study the link between the algebraic properties of the base ideal and those of the ideal of these points fattened by the virtual multiplicities arising from the linear system. We reveal conditions which naturally regulate this association, with particular emphasis on the homological side. While most classical numerical inequalities concern the three highest virtual multiplicities, here we emphasize also the role of one single highest multiplicity. In this vein we describe classes of Cremona maps for large and small values of the highest virtual multiplicity. We also deal with the delicate question as to when is the base ideal non-saturated and consider the structure of its saturation.
This paper is concerned with singular projective rationally connected threefolds $X$ which carry non-zero pluri-forms, that is the reflexive hull of $({\rm\Omega}_{X}^{1})^{\otimes m}$ has a non-zero global section for some positive integer $m$. If $X$ has $\mathbb{Q}$-factorial terminal singularities, then we show that there is a fibration $p$ from $X$ to $\mathbb{P}^{1}$. Moreover, we give a formula for the numbers of $m$-pluri-forms as a function of the ramification of the fibration $p$.
For a variety with a Whitney stratification by affine spaces, we study categories of motivic sheaves which are constant mixed Tate along the strata. We are particularly interested in those cases where the category of mixed Tate motives over a point is equivalent to the category of finite-dimensional bigraded vector spaces. Examples of such situations include rational motives on varieties over finite fields and modules over the spectrum representing the semisimplification of de Rham cohomology for varieties over the complex numbers. We show that our categories of stratified mixed Tate motives have a natural weight structure. Under an additional assumption of pointwise purity for objects of the heart, tilting gives an equivalence between stratified mixed Tate sheaves and the bounded homotopy category of the heart of the weight structure. Specializing to the case of flag varieties, we find natural geometric interpretations of graded category ${\mathcal{O}}$ and Koszul duality.
We give a large family of weighted projective planes, blown up at a smooth point, that do not have finitely generated Cox rings. We then use the method of Castravet and Tevelev to prove that the moduli space $\overline{M}_{0,n}$ of stable $n$-pointed genus-zero curves does not have a finitely generated Cox ring if $n$ is at least $13$.
Let $G$ be a split reductive group. We introduce the moduli problem of bundle chains parametrizing framed principal $G$-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack provides an equivariant toroidal compactification of $G$. All toric orbifolds may be thus obtained. Moreover, we get a canonical compactification of any semisimple $G$, which agrees with the wonderful compactification in the adjoint case, but which in other cases is an orbifold. Finally, we describe the connections with Losev–Manin’s spaces of weighted pointed curves and with Kausz’s compactification of $GL_{n}$.
Let $G$ be a compact connected Lie group with a maximal torus $T$. In the context of Schubert calculus we present the integral cohomology $H^{\ast }(G/T)$ by a minimal system of generators and relations.
We investigate Cox rings of minimal resolutions of surface quotient singularities and provide two descriptions of these rings. The first one is the equation for the spectrum of a Cox ring, which is a hypersurface in an affine space. The second is the set of generators of the Cox ring viewed as a subring of the coordinate ring of a product of a torus and another surface quotient singularity. In addition, we obtain an explicit description of the minimal resolution as a divisor in a toric variety.
In this note we study properties of partially ample line bundles on simplicial projective toric varieties. We prove that the cone of q-ample line bundles is a union of rational polyhedral cones, and calculate these cones in examples. We prove a restriction theorem for big q-ample line bundles, and deduce that q-ampleness of the anticanonical bundle is not invariant under flips. Finally we prove a Kodaira-type vanishing theorem for q-ample line bundles.
Let $G$ be an algebraic real reductive group and $Z$ a real spherical $G$-variety, that is, it admits an open orbit for a minimal parabolic subgroup $P$. We prove a local structure theorem for $Z$. In the simplest case where $Z$ is homogeneous, the theorem provides an isomorphism of the open $P$-orbit with a bundle $Q\times _{L}S$. Here $Q$ is a parabolic subgroup with Levi decomposition $L\ltimes U$, and $S$ is a homogeneous space for a quotient $D=L/L_{n}$ of $L$, where $L_{n}\subseteq L$ is normal, such that $D$ is compact modulo center.
We give explicit formulas for the Hilbert series of residual intersections of a scheme in terms of the Hilbert series of its conormal modules. In a previous paper, we proved that such formulas should exist. We give applications to the number of equations defining projective varieties and to the dimension of secant varieties of surfaces and three-folds.
We prove a Givental-style mirror theorem for toric Deligne–Mumford stacks ${\mathcal{X}}$. This determines the genus-zero Gromov–Witten invariants of ${\mathcal{X}}$ in terms of an explicit hypergeometric function, called the $I$-function, that takes values in the Chen–Ruan orbifold cohomology of ${\mathcal{X}}$.
We prove that the group of normalized cohomological invariants of degree $3$ modulo the subgroup of semidecomposable invariants of a semisimple split linear algebraic group $G$ is isomorphic to the torsion part of the Chow group of codimension-$2$ cycles of the respective versal $G$-flag. In particular, if $G$ is simple, we show that this factor group is isomorphic to the group of indecomposable invariants of $G$. As an application, we construct nontrivial cohomological invariants for indecomposable central simple algebras.
In this paper we consider Grassmannians in arbitrary characteristic. Generalizing Kapranov’s well-known characteristic-zero results, we construct dual exceptional collections on them (which are, however, not strong) as well as a tilting bundle. We show that this tilting bundle has a quasi-hereditary endomorphism ring and we identify the standard, costandard, projective and simple modules of the latter.
We compute the global log canonical thresholds of quasi-smooth well-formed complete intersection log del Pezzo surfaces of amplitude 1 in weighted projective spaces. As a corollary we show the existence of orbifold Kähler—Einstein metrics on many of them.