Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:31:47.531Z Has data issue: false hasContentIssue false

Schubert presentation of the cohomology ring of flag manifolds $G/T$

Published online by Cambridge University Press:  01 August 2015

Haibao Duan
Affiliation:
Institute of Mathematics, Chinese Academy of Sciences, Beijing 100190, PR China email dhb@math.ac.cn
Xuezhi Zhao
Affiliation:
Department of Mathematics, Capital Normal University, Beijing 100048, PR China email zhaoxve@mail.cnu.edu.cn

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $G$ be a compact connected Lie group with a maximal torus $T$. In the context of Schubert calculus we present the integral cohomology $H^{\ast }(G/T)$ by a minimal system of generators and relations.

Type
Research Article
Copyright
© The Author(s) 2015 

References

Atiyah, M. and Hirzebruch, F., Vector bundles and homogeneous spaces , Proceedings of Symposia in Pure Mathematics III (American Mathematical Society, Providence, RI, 1961) 738.Google Scholar
Bernstein, I. N., Gel’fand, I. M. and Gel’fand, S. I., ‘Schubert cells and cohomology of the spaces GP ’, Russian Math. Surveys 28 (1973) 126.CrossRefGoogle Scholar
Borel, A., ‘Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts’, Ann. of Math. 57 (1953) 115207.Google Scholar
Borel, A. and Hirzebruch, F., ‘Characteristic classes and homogeneous space I’, Amer. J. Math. 80 (1958) 458538.Google Scholar
Bott, R. and Samelson, H., ‘The cohomology ring of GT ’, Proc. Natl. Acad. Sci. USA 41 (1955) 490492.Google Scholar
Chaput, P. E. and Perrin, N., ‘Towards a Littlewood–Richardson rule for Kac–Moody homogeneous spaces’, J. Lie Theory 22 (2012) no. 1, 1780.Google Scholar
Chevalley, C., ‘Sur les décompositions cellulaires des espaces GB ’, Algebraic groups and their generalizations: classical methods , Proceedings of Symposia in Pure Mathematics 56 (ed. Haboush, W.; American Mathematical Society, Providence, RI, 1994) 126. Part 1.Google Scholar
Demazure, M., ‘Désingularisation des variétés de Schubert généralisées’, Ann. Sci. Éc. Norm. Supér. (4) 7 (1974) 5388.CrossRefGoogle Scholar
Duan, H., ‘Self-maps of the Grassmannian of complex structures’, Compos. Math. 132 (2002) no. 2, 159175.Google Scholar
Duan, H., ‘Multiplicative rule of Schubert classes’, Invent. Math. 159 (2005) no. 2, 407436; 177 (2009) no. 3, 683–684.Google Scholar
Duan, H., ‘The cohomology of compact Lie groups’, Preprint, 2015, arXiv:1502.00410 [math.AT].Google Scholar
Duan, H. and Liu, S. L., ‘The isomorphism type of the centralizer of an element in a Lie group’, J. Algebra 376 (2013) 2545.CrossRefGoogle Scholar
Duan, H. and Zhao, X., ‘The classification of cohomology endomorphisms of certain flag manifolds’, Pacific J. Math. 192 (2000) no. 1, 93102.Google Scholar
Duan, H. and Zhao, X., ‘Algorithm for multiplying Schubert classes’, Internat. J. Algebra Comput. 16 (2006) no. 6, 11971210.Google Scholar
Duan, H. and Zhao, X., ‘Schubert calculus and cohomology of Lie groups’, Preprint, 2007, arXiv:0711.2541 [math.AT (math.AG)].Google Scholar
Duan, H. and Zhao, X., ‘Erratum: Multiplicative rule of Schubert classes’, Invent. Math. 177 (2009) 683684.Google Scholar
Duan, H. and Zhao, X., ‘The Chow rings of generalized Grassmannians’, Found. Comput. Math. 10 (2010) no. 3, 245274.Google Scholar
Duan, H. and Zhao, X., ‘Schubert calculus and the Hopf algebra structures of exceptional Lie groups’, Forum Math. 26 (2014) no. 1, 113140.Google Scholar
Fulton, W., Intersection theory (Springer, Berlin, New York, 1998).Google Scholar
Grothendieck, A., ‘Torsion homologique et sections rationnelles’, Séminaire C. Chevalley, ENS (Secretariat Mathématique, IHP, Paris, 1958) exposé 5.Google Scholar
Humphreys, J. E., Introduction to Lie algebras and representation theory , Graduate Texts in Mathematics 9 (Springer, New York, 1972).Google Scholar
Husemoller, D., Fibre bundles , 2nd edn, Graduate Texts in Mathematics 20 (Springer, New York, Heidelberg, 1975).Google Scholar
Kač, V. G., ‘Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups’, Invent. Math. 80 (1985) no. 1, 6979.Google Scholar
Kleiman, S., ‘Intersection theory and enumerative geometry: a decade in review’, Algebraic geometry, Part 2, Proceedings of the Summer Research Institute, Brunswick, Maine, 1985 , Proceedings of Symposia in Pure Mathematics 46 (American Mathematical Society, Providence, RI, 1987) 321370.Google Scholar
Kumar, S., Kac–Moody groups, their flag varieties and representation theory , Progress in Mathematics 204 (Birkhaüser, Boston, MA, 2002).CrossRefGoogle Scholar
Lakshmibai, V. and Gonciulea, N., The flag variety , Actualites Mathematiques (Hermann, Paris, 2001).Google Scholar
Marlin, R., ‘Anneaux de Chow des groupes algériques SU (n), Sp (n), SO (n), Spin(n), G 2, F 4 ’, C. R. Acad. Sci. Paris A 279 (1974) 119122.Google Scholar
McCleary, J., A user’s guide to spectral sequences , 2nd edn Cambridge Studies in Advanced Mathematics 58 (Cambridge University Press, Cambridge, 2001).Google Scholar
Nakagawa, M., ‘The integral cohomology ring of E 7T ’, J. Math. Kyoto Univ. 41 (2001) 303321.Google Scholar
Nakagawa, M., ‘The integral cohomology ring of E 8T ’, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010) 6468.Google Scholar
Schubert, H., Kalkül der abzählenden Geometrie (Springer, Berlin, Heidelberg, New York, 1979).CrossRefGoogle Scholar
Sottile, F., ‘Four entries for Kluwer encyclopaedia of mathematics’, Preprint, arXiv:Math.AG/0102047.Google Scholar
Toda, H., ‘On the cohomology ring of some homogeneous spaces’, J. Math. Kyoto Univ. 15 (1975) 185199.Google Scholar
Toda, H. and Watanabe, T., ‘The integral cohomology ring of F 4T and E 6T ’, J. Math. Kyoto Univ. 14 (1974) 257286.Google Scholar
van der Waerden, B. L., ‘Topologische Begründung des Kalk üls der abzählenden Geometrie’, Math. Ann. 102 (1930) no. 1, 337362.Google Scholar
van der Waerden, B. L., ‘The foundation of algebraic geometry from Severi to André Weil’, Arch. Hist. Exact Sci. 7 (1971) no. 3, 171180.Google Scholar
Weil, A., Foundations of algebraic geometry (American Mathematical Society, Providence, RI, 1962).Google Scholar