To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a split connected reductive group over a finite field of characteristic $p > 2$ such that $G_\text {der}$ is absolutely almost simple. We give a geometric construction of perverse $\mathbb {F}_p$-sheaves on the Iwahori affine flag variety of $G$ which are central with respect to the convolution product. We deduce an explicit formula for an isomorphism from the spherical mod $p$ Hecke algebra to the center of the Iwahori mod $p$ Hecke algebra. We also give a formula for the central integral Bernstein elements in the Iwahori mod $p$ Hecke algebra. To accomplish these goals we construct a nearby cycles functor for perverse $\mathbb {F}_p$-sheaves and we use Frobenius splitting techniques to prove some properties of this functor. We also prove that certain equal characteristic analogues of local models of Shimura varieties are strongly $F$-regular, and hence they are $F$-rational and have pseudo-rational singularities.
We give a characterisation of Fano-type surfaces with large cyclic automorphisms. As an application, we give a characterisation of Kawamata log terminal $3$-fold singularities with large class groups of rank at least $2$.
Let $L$ be a very ample line bundle on a projective scheme $X$ defined over an algebraically closed field $\Bbbk$ with ${\rm char}\,\Bbbk \neq 2$. We say that $(X,L)$ satisfies property $\mathsf {QR}(k)$ if the homogeneous ideal of the linearly normal embedding $X \subset {\mathbb {P}} H^{0} (X,L)$ can be generated by quadrics of rank less than or equal to $k$. Many classical varieties, such as Segre–Veronese embeddings, rational normal scrolls and curves of high degree, satisfy property $\mathsf {QR}(4)$. In this paper, we first prove that if ${\rm char}\,\Bbbk \neq 3$ then $({\mathbb {P}}^{n} , \mathcal {O}_{{\mathbb {P}}^{n}} (d))$ satisfies property $\mathsf {QR}(3)$ for all $n \geqslant 1$ and $d \geqslant 2$. We also investigate the asymptotic behavior of property $\mathsf {QR}(3)$ for any projective scheme. Specifically, we prove that (i) if $X \subset {\mathbb {P}} H^{0} (X,L)$ is $m$-regular then $(X,L^{d} )$ satisfies property $\mathsf {QR}(3)$ for all $d \geqslant m$, and (ii) if $A$ is an ample line bundle on $X$ then $(X,A^{d} )$ satisfies property $\mathsf {QR}(3)$ for all sufficiently large even numbers $d$. These results provide affirmative evidence for the expectation that property $\mathsf {QR}(3)$ holds for all sufficiently ample line bundles on $X$, as in the cases of Green and Lazarsfeld's condition $\mathrm {N}_p$ and the Eisenbud–Koh–Stillman determininantal presentation in Eisenbud et al. [Determinantal equations for curves of high degree, Amer. J. Math. 110 (1988), 513–539]. Finally, when ${\rm char}\,\Bbbk = 3$ we prove that $({\mathbb {P}}^{n} , \mathcal {O}_{{\mathbb {P}}^{n}} (2))$ fails to satisfy property $\mathsf {QR}(3)$ for all $n \geqslant 3$.
We construct a mirabolic analogue of the geometric Satake equivalence. We also prove an equivalence that relates representations of a supergroup to the category of $\operatorname{GL}(N-1,{\mathbb {C}}[\![t]\!])$-equivariant perverse sheaves on the affine Grassmannian of $\operatorname{GL}_N$. We explain how our equivalences fit into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
We consider G, a linear algebraic group defined over $\Bbbk $, an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K, we can associate to it a compact G-space $S^\mu _G(\Bbbk )$ consisting of $\mu $-types on G. We show that for each $p_\mu \in S^\mu _G(\Bbbk )$, $\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$ is a solvable infinite algebraic group when $p_\mu $ is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of $\mathrm {Stab}\left (p_\mu \right )$ in terms of the dimension of p.
Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the $\ell $-adic cohomology of these towers.
Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie $\ell $-adique de ces tours.
We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a $\mathbb {Z}\left [q^{\pm 1}\right ]$-linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type and equivariant scalars $e^{\lambda }$, where $\lambda $ is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type $E_8$. The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric q-Toda operators for minuscule weights in ADE type.
We compute the cohomology rings of smooth real toric varieties and of real toric spaces, which are quotients of real moment-angle complexes by freely acting subgroups of the ambient 2-torus. The differential graded algebra (dga) we present is in fact an equivariant dga model, valid for arbitrary coefficients. We deduce from our description that smooth toric varieties are $\hbox{M}$-varieties.
We explain how to form a novel dataset of Calabi–Yau threefolds via the Gross–Siebert algorithm. We expect these to degenerate to Calabi–Yau toric hypersurfaces with certain Gorenstein (not necessarily isolated) singularities. In particular, we explain how to ‘smooth the boundary’ of a class of four-dimensional reflexive polytopes to obtain polarised tropical manifolds. We compute topological invariants of a compactified torus fibration over each such tropical manifold, expected to be homeomorphic to the general fibre of the Gross–Siebert smoothing. We consider a family of examples related to products of reflexive polygons. Among these we find $14$ topological types with $b_2=1$ that do not appear in existing lists of known rank-one Calabi–Yau threefolds.
We study the behaviour of representation varieties of quivers with relations under the operation of node splitting. We show how splitting a node gives a correspondence between certain closed subvarieties of representation varieties for different algebras, which preserves properties like normality or having rational singularities. Furthermore, we describe how the defining equations of such closed subvarieties change under the correspondence.
By working in the ‘relative setting’ (splitting one node at a time), we demonstrate that there are many nonhereditary algebras whose irreducible components of representation varieties are all normal with rational singularities. We also obtain explicit generators of the prime defining ideals of these irreducible components. This class contains all radical square zero algebras, but also many others, as illustrated by examples throughout the paper. We also show that this is true when irreducible components are replaced by orbit closures, for a more restrictive class of algebras. Lastly, we provide applications to decompositions of moduli spaces of semistable representations of certain algebras.
We construct some new deformation families of four-dimensional Fano manifolds of index one in some known classes of Gorenstein formats. These families have explicit descriptions in terms of equations, defining their image under the anticanonical embedding in some weighted projective space. They also have relatively smaller anticanonical degree than most other known families of smooth Fano 4-folds.
In 2006, Kenyon and Okounkov Kenyon and Okounkov [12] computed the moduli space of Harnack curves of degree d in ${\mathbb {C}\mathbb {P}}^2$. We generalise their construction to any projective toric surface and show that the moduli space ${\mathcal {H}_\Delta }$ of Harnack curves with Newton polygon $\Delta $ is diffeomorphic to ${\mathbb {R}}^{m-3}\times {\mathbb {R}}_{\geq 0}^{n+g-m}$, where $\Delta $ has m edges, g interior lattice points and n boundary lattice points. This solves a conjecture of Crétois and Lang. The main result uses abstract tropical curves to construct a compactification of this moduli space where additional points correspond to collections of curves that can be patchworked together to produce a curve in ${\mathcal {H}_\Delta }$. This compactification has a natural stratification with the same poset as the secondary polytope of $\Delta $.
We compute the spaces of sections of powers of the determinant line bundle on the spherical Schubert subvarieties of the Beilinson–Drinfeld affine Grassmannians. The answer is given in terms of global Demazure modules over the current Lie algebra.
In our previous paper we suggested a conjecture relating the structure of the small quantum cohomology ring of a smooth Fano variety of Picard number 1 to the structure of its derived category of coherent sheaves. Here we generalize this conjecture, make it more precise, and support it by the examples of (co)adjoint homogeneous varieties of simple algebraic groups of Dynkin types $\mathrm {A}_n$ and $\mathrm {D}_n$, that is, flag varieties $\operatorname {Fl}(1,n;n+1)$ and isotropic orthogonal Grassmannians $\operatorname {OG}(2,2n)$; in particular, we construct on each of those an exceptional collection invariant with respect to the entire automorphism group. For $\operatorname {OG}(2,2n)$ this is the first exceptional collection proved to be full.
Involution Schubert polynomials represent cohomology classes of K-orbit closures in the complete flag variety, where K is the orthogonal or symplectic group. We show they also represent $\mathsf {T}$-equivariant cohomology classes of subvarieties defined by upper-left rank conditions in the spaces of symmetric or skew-symmetric matrices. This geometry implies that these polynomials are positive combinations of monomials in the variables $x_i + x_j$, and we give explicit formulas of this kind as sums over new objects called involution pipe dreams. Our formulas are analogues of the Billey–Jockusch–Stanley formula for Schubert polynomials. In Knutson and Miller’s approach to matrix Schubert varieties, pipe dream formulas reflect Gröbner degenerations of the ideals of those varieties, and we conjecturally identify analogous degenerations in our setting.
We study the back stable Schubert calculus of the infinite flag variety. Our main results are:
– a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part;
– a novel definition of double and triple Stanley symmetric functions;
– a proof of the positivity of double Edelman–Greene coefficients generalizing the results of Edelman–Greene and Lascoux–Schützenberger;
– the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman–Greene insertion algorithm;
– the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case;
– equivariant Pieri rules for the homology of the infinite Grassmannian;
– homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.
We study smoothing of pencils of curves on surfaces with normal crossings. As a consequence we show that the canonical divisor of $\overline {\mathcal {M}}_{g,n}$ is not pseudoeffective in some range, implying that $\overline {\mathcal {M}}_{12,6}$, $\overline {\mathcal {M}}_{12,7}$, $\overline {\mathcal {M}}_{13,4}$ and $\overline {\mathcal {M}}_{14,3}$ are uniruled. We provide upper bounds for the Kodaira dimension of $\overline {\mathcal {M}}_{12,8}$ and $\overline {\mathcal {M}}_{16}$. We also show that the moduli space of $(4g+5)$-pointed hyperelliptic curves $\overline {\mathcal {H}}_{g,4g+5}$ is uniruled. Together with a recent result of Schwarz, this concludes the classification of moduli of pointed hyperelliptic curves with negative Kodaira dimension.
Building on work of Segre and Kollár on cubic hypersurfaces, we construct over imperfect fields of characteristic $p\geq 3$ particular hypersurfaces of degree p, which show that geometrically rational schemes that are regular and whose rational points are Zariski dense are not necessarily unirational. A likewise behavior holds for certain cubic surfaces in characteristic $p=2$.
Soient K un corps discrètement valué et hensélien, ${\mathcal {O}}$ son anneau d’entiers supposé excellent, $\kappa $ son corps résiduel supposé parfait et G un K-groupe quasi-réductif, c’est-à-dire lisse, affine, connexe et à radical unipotent déployé trivial. On construit l’immeuble de Bruhat-Tits ${\mathcal {I}}(G, K)$ pour $G(K)$ de façon canonique, améliorant les constructions moins canoniques de M. Solleveld sur les corps locaux, et l’on associe un ${\mathcal {O}}$-modèle en groupes ${\mathcal {G}}_{\Omega }$ de G à chaque partie non vide et bornée $\Omega $ contenue dans un appartement de ${\mathcal {I}}(G,K)$. On montre que les groupes parahoriques ${\mathcal {G}}_{\textbf {f}}$ attachés aux facettes peuvent être caractérisés en fonction de la géométrie de leurs grassmanniennes affines, ainsi que dans la thèse de T. Richarz. Ces résultats sont appliqués ailleurs à l’étude des grassmanniennes affines tordues entières.