Jeśmanowicz conjectured that  $(x,y,z)=(2,2,2)$ is the only positive integer solution of the equation
$(x,y,z)=(2,2,2)$ is the only positive integer solution of the equation  $(*)\; ((\kern1.5pt f^2-g^2)n)^x+(2fgn)^y=((\kern1.5pt f^2+g^2)n)^x$, where n is a positive integer and f, g are positive integers such that
$(*)\; ((\kern1.5pt f^2-g^2)n)^x+(2fgn)^y=((\kern1.5pt f^2+g^2)n)^x$, where n is a positive integer and f, g are positive integers such that  $f>g$,
$f>g$,  $\gcd (\kern1.5pt f,g)=1$ and
$\gcd (\kern1.5pt f,g)=1$ and  $f \not \equiv g\pmod 2$. Using Baker’s method, we prove that: (i) if
$f \not \equiv g\pmod 2$. Using Baker’s method, we prove that: (i) if  $n>1$,
$n>1$,  $f \ge 98$ and
$f \ge 98$ and  $g=1$, then
$g=1$, then  $(*)$ has no positive integer solutions
$(*)$ has no positive integer solutions  $(x,y,z)$ with
$(x,y,z)$ with  $x>z>y$; and (ii) if
$x>z>y$; and (ii) if  $n>1$,
$n>1$,  $f=2^rs^2$ and
$f=2^rs^2$ and  $g=1$, where r, s are positive integers satisfying
$g=1$, where r, s are positive integers satisfying $(**)\; 2 \nmid s$ and
$(**)\; 2 \nmid s$ and  $s<2^{r/2}$, then
$s<2^{r/2}$, then  $(*)$ has no positive integer solutions
$(*)$ has no positive integer solutions  $(x,y,z)$ with
$(x,y,z)$ with  $y>z>x$. Thus, Jeśmanowicz’ conjecture is true if
$y>z>x$. Thus, Jeśmanowicz’ conjecture is true if  $f=2^rs^2$ and
$f=2^rs^2$ and  $g=1$, where r, s are positive integers satisfying
$g=1$, where r, s are positive integers satisfying  $(**)$.
$(**)$.