Let p be a prime and let  $J_r$ denote a full
$J_r$ denote a full  $r \times r$ Jordan block matrix with eigenvalue
$r \times r$ Jordan block matrix with eigenvalue  $1$ over a field F of characteristic p. For positive integers r and s with
$1$ over a field F of characteristic p. For positive integers r and s with  $r \leq s$, the Jordan canonical form of the
$r \leq s$, the Jordan canonical form of the  $r s \times r s$ matrix
$r s \times r s$ matrix  $J_{r} \otimes J_{s}$ has the form
$J_{r} \otimes J_{s}$ has the form  $J_{\lambda _1} \oplus J_{\lambda _2} \oplus \cdots \oplus J_{\lambda _{r}}$. This decomposition determines a partition
$J_{\lambda _1} \oplus J_{\lambda _2} \oplus \cdots \oplus J_{\lambda _{r}}$. This decomposition determines a partition  $\lambda (r,s,p)=(\lambda _1,\lambda _2,\ldots , \lambda _{r})$ of
$\lambda (r,s,p)=(\lambda _1,\lambda _2,\ldots , \lambda _{r})$ of  $r s$. Let
$r s$. Let  $n_1, \ldots , n_k$ be the multiplicities of the distinct parts of the partition and set
$n_1, \ldots , n_k$ be the multiplicities of the distinct parts of the partition and set  $c(r,s,p)=(n_1,\ldots ,n_k)$. Then
$c(r,s,p)=(n_1,\ldots ,n_k)$. Then  $c(r,s,p)$ is a composition of r. We present a new bottom-up algorithm for computing
$c(r,s,p)$ is a composition of r. We present a new bottom-up algorithm for computing  $c(r,s,p)$ and
$c(r,s,p)$ and  $\lambda (r,s,p)$ directly from the base-p expansions for r and s.
$\lambda (r,s,p)$ directly from the base-p expansions for r and s.