Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T22:43:58.821Z Has data issue: false hasContentIssue false

CONNECTED COMPONENTS IN THE INVARIABLY GENERATING GRAPH OF A FINITE GROUP

Published online by Cambridge University Press:  25 March 2021

DANIELE GARZONI*
Affiliation:
Dipartimento di Matematica ‘Tullio Levi-Civita’, Università degli Studi di Padova, Padova, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that the invariably generating graph of a finite group can have an arbitrarily large number of connected components with at least two vertices.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© Australian Mathematical Publishing Association Inc. 2021

References

Acciarri, C. and Lucchini, A., ‘Graphs encoding the generating properties of a finite group’, Math. Nachr. 293(9) (2020), 16441674.10.1002/mana.201900144CrossRefGoogle Scholar
Bray, J. N., Holt, D. F. and Roney-Dougal, C. M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series, 407 (Cambridge University Press, Cambridge, 2013).10.1017/CBO9781139192576CrossRefGoogle Scholar
Breuer, T., Guralnick, R. M. and Kantor, W. M., ‘Probabilistic generation of finite simple groups. II’, J. Algebra 320(2) (2008), 443494.CrossRefGoogle Scholar
Britnell, J. and Maróti, A., ‘Normal coverings of linear groups’, Algebra Number Theory 7(9) (2013), 20852102.CrossRefGoogle Scholar
Bubboloni, D., ‘Coverings of the symmetric and alternating groups’, Preprint, 2010, arXiv:1009.3866.Google Scholar
Bubboloni, D. and Lucido, M. S., ‘Coverings of linear groups’, Comm. Algebra 30(5) (2002), 21432159.CrossRefGoogle Scholar
Bubboloni, D., Lucido, M. S. and Weigel, T., ‘Generic 2-coverings of finite groups of Lie type’, Rend. Semin. Mat. Univ. Padova 115 (2006), 209252.Google Scholar
Bubboloni, D., Lucido, M. S. and Weigel, T., ‘2-coverings of classical groups’, Preprint, 2011, arXiv:1102.0660.Google Scholar
Bubboloni, D., Praeger, C. E. and Spiga, P., ‘Normal coverings and pairwise generation of finite alternating and symmetric groups’, J. Algebra 390 (2013), 199215.CrossRefGoogle Scholar
Burness, T. C., ‘Simple groups, generation and probabilistic methods’, Groups St Andrews 2017 in Birmingham, London Mathematical Society Lecture Note Series, 455 (Cambridge University Press, Cambridge, 2019), 200229.10.1017/9781108692397.009CrossRefGoogle Scholar
Burness, T. C., Guralnick, R. M. and Harper, S., ‘The spread of a finite group’, Ann. of Math. 193(2) (2021), 619687.10.4007/annals.2021.193.2.5CrossRefGoogle Scholar
Crestani, E. and Lucchini, A., ‘The generating graph of finite soluble groups’, Israel J. Math. 198(1) (2013), 6374.CrossRefGoogle Scholar
Crestani, E. and Lucchini, A., ‘The non-isolated vertices in the generating graph of a direct powers of simple groups’, J. Algebraic Combin. 37(2) (2013) 249263.10.1007/s10801-012-0365-1CrossRefGoogle Scholar
Detomi, E. and Lucchini, A., ‘Invariable generation with elements of coprime prime-power orders’, J. Algebra 423 (2015), 683701.CrossRefGoogle Scholar
Dickson, L. E., Linear Groups: With an Exposition of the Galois Field Theory (Dover Publications, New York, 1958).Google Scholar
Dixon, J. D., ‘Random sets which invariably generate the symmetric group’, Discrete Math. 105(1–3) (1992), 2539.CrossRefGoogle Scholar
Garzoni, D., ‘The invariably generating graph of the alternating and symmetric groups’, J. Group Theory 23(6) (2020), 10811102.CrossRefGoogle Scholar
Garonzi, M. and Lucchini, A., ‘Covers and normal covers of finite groups’, J. Algebra 422 (2015), 148165.CrossRefGoogle Scholar
Garzoni, D. and Lucchini, A., ‘Minimal invariable generating sets’, J. Pure Appl. Algebra 224(1) (2020), 218238.CrossRefGoogle Scholar
Garzoni, D. and McKemmie, E., ‘On the probability of generating invariably a finite simple group’, Preprint, 2020, arXiv:2008.03812.Google Scholar
Guralnick, R. M. and Kantor, W. M., ‘Probabilistic generation of finite simple groups’, J. Algebra 234(2) (2020), 743792.10.1006/jabr.2000.8357CrossRefGoogle Scholar
Guralnick, R. M. and Malle, G., ‘Simple groups admit Beauville structures’, J. Lond. Math. Soc. (2) 85(3) (2012), 694721.10.1112/jlms/jdr062CrossRefGoogle Scholar
Hall, P., ‘The Eulerian functions of a group’, Q. J. Math. os-7(1) (1936), 134151.10.1093/qmath/os-7.1.134CrossRefGoogle Scholar
Harper, S. and Lucchini, A., ‘Connectivity of generating graphs of nilpotent groups’, Algebraic Combin. 3 (2020), 11831195.10.5802/alco.132CrossRefGoogle Scholar
Kantor, W. M. and Lubotzky, A., ‘The probability of generating a finite classical group’, Geom. Dedicata 36(1) (1990), 6787.CrossRefGoogle Scholar
Kantor, W. M., Lubotzky, A. and Shalev, A., ‘Invariable generation and the Chebotarev invariant of a finite group’, J. Algebra 348 (2011), 302314.10.1016/j.jalgebra.2011.09.022CrossRefGoogle Scholar
Kleidman, P. and Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, 129 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
Lucchini, A. and Maróti, A., ‘Some results and questions related to the generating graph of a finite group’, Ischia Group Theory 2008 (World Scientific, Singapore, 2009), 183208.CrossRefGoogle Scholar
Pellegrini, M. A., ‘2-coverings for exceptional and sporadic simple groups’, Arch. Math. 101(3) (2013), 201206.CrossRefGoogle Scholar