To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
The stars of the Milky Way carry the chemical history of our Galaxy in their atmospheres as they journey through its vast expanse. Like barcodes, we can extract the chemical fingerprints of stars from high-resolution spectroscopy. The fourth data release (DR4) of the Galactic Archaeology with HERMES (GALAH) Survey, based on a decade of observations, provides the chemical abundances of up to 32 elements for 917 588 stars that also have exquisite astrometric data from the Gaia satellite. For the first time, these elements include life-essential nitrogen to complement carbon, and oxygen as well as more measurements of rare-earth elements critical to modern-life electronics, offering unparalleled insights into the chemical composition of the Milky Way. For this release, we use neural networks to simultaneously fit stellar parameters and abundances across the whole wavelength range, leveraging synthetic grids computed with Spectroscopy Made Easy. These grids account for atomic line formation in non-local thermodynamic equilibrium for 14 elements. In a two-iteration process, we first fit stellar labels to all 1 085 520 spectra, then co-add repeated observations and refine these labels using astrometric data from Gaia and 2MASS photometry, improving the accuracy and precision of stellar parameters and abundances. Our validation thoroughly assesses the reliability of spectroscopic measurements and highlights key caveats. GALAH DR4 represents yet another milestone in Galactic archaeology, combining detailed chemical compositions from multiple nucleosynthetic channels with kinematic information and age estimates. The resulting dataset, covering nearly a million stars, opens new avenues for understanding not only the chemical and dynamical history of the Milky Way but also the broader questions of the origin of elements and the evolution of planets, stars, and galaxies.
Bow shocks generated by pulsars moving through weakly ionized interstellar medium (ISM) produce emission dominated by non-equilibrium atomic transitions. These bow shocks are primarily observed as H$\alpha$ nebulae. We developed a package, named Shu, that calculates non-LTE intensity maps in more than 150 spectral lines, taking into account geometrical properties of the pulsars’ motion and lines of sight. We argue here that atomic (C i, N i, O i) and ionic (S ii, N ii, O iii, Ne iv) transitions can be used as complementary and sensitive probes of ISM. We perform self-consistent 2D relativistic hydrodynamic calculations of the bow shock structure and generate non-LTE emissivity maps, combining global dynamics of relativistic flows, and detailed calculations of the non-equilibrium ionization states. We find that though typically $\text{H}_\alpha$ emission is dominant, spectral fluxes in [O iii], [S ii] and [N ii] may become comparable for relatively slowly moving pulsars. Overall, morphology of non-LTE emission, especially of the ionic species, is a sensitive probe of the density structures of the ISM.
Closed-form expressions for aerodynamic force on an accelerating aerofoil were presented in the 1930s, relating instantaneous force to geometric and kinematic parameters under the following assumptions: a thin aerofoil, small-amplitude motions, planar wake development, and a flow that is inviscid, incompressible and two-dimensional. The present work is a step towards analogous closed-form expressions for large-amplitude motions of thick foils when the flow remains attached and boundary-layer thickness approaches (but does not equal) zero. A mathematical framework is derived from vortical flow theory to highlight the finite degrees of freedom that must be solved or predicted in order to yield a predictive aerodynamic model under the stated conditions. The special case of periodic motion is further considered, and an equation is derived to calculate mean forces from known or assumed time histories of circulation, vorticity-weighted mean wake convection velocity and trailing-edge velocity.
The quasi-geostrophic two-layer model is a widely used tool to study baroclinic instability in the ocean. One instability criterion for the inviscid two-layer model is that the potential vorticity (PV) gradient must change sign between the layers. This has a well-known implication if the model includes a linear bottom slope: for sufficiently steep retrograde slopes, instability is suppressed for a flow parallel to the isobaths. This changes in the presence of bottom friction as well as when the PV gradients in the layers are not aligned. We derive the generalised instability condition for the two-layer model with non-zero friction and arbitrary mean flow orientation. This condition involves neither the friction coefficient nor the bottom slope; even infinitesimally weak bottom friction destabilises the system regardless of the bottom slope. We then examine the instability characteristics as a function of varying slope orientation and magnitude. The system is stable across all wavenumbers only if friction is absent and if the planetary, topographic and stretching PV gradients are aligned. Strong bottom friction decreases the growth rates but also alters the dependence on bottom slope. In conclusion, the often mentioned stabilisation by steep bottom slopes in the two-layer model holds only in very specific circumstances, thus probably plays only a limited role in the ocean.
Removing liquid from a channel is an important process. In a horizontal slit in the presence of a downward gravity field, two distinct liquid states were commonly observed: gravity-driven liquid non-occlusion and liquid plug (Parry et al. 2012 Phys. Rev. Lett.108, 246101). A wetting-driven non-occlusion at some contact angles was induced by insertion of a rod into a horizontal tube at an eccentric position (Tan et al. 2022 J. Fluid Mech.946, A7). Insertion of a plate into a horizontal slit may enhance the capacity of removing liquid. This situation is theoretically investigated, and the theoretical results are mutually verified by a computational fluid dynamics (CFD) numerical method that is first employed to determine the critical non-occlusion conditions. Four types of liquid states are observed. The effects of contact angles, plate position and Bond number (measured by downward gravitational force relative to surface tension force) on different types of liquid states are analysed. This paper additionally provides a CFD numerical method for understanding the conditions for the stability and existence of the liquid plugs in complex situations (e.g. considering the effect of the sidewalls, or when a rod or plate is inserted into a circular, elliptical or polygonal tube) in the future.
The propagation and absorption of the slow waves in the plasma of the Joint European Torus (JET) tokamak have been investigated by ray tracing. The study aims to obtain a qualitative notion of the penetration into the plasma and absorption of the slow wave excited by the A2 ITER-like antenna. The slow waves are radiated by antennas in the ion cyclotron resonance frequency inverted minority heating or mode conversion heating regimes. It has been discovered that the rays propagate in the toroidal direction over a significant distance, up to 6 × 103 cm, from the antenna. Spreading in the peripheral plasma, mainly between the separatrix and the wall, they slowly shift in the poloidal direction and can reach the divertor region. The change in equilibrium of the JET tokamak has a strong influence on both the propagation and absorption of slow waves. Absorption of the slow waves is caused by ion–electron collisions and Landau damping. In the minority heating regimes, the slow waves are strongly damped in the cyclotron resonance of minority ions even at very low minority density.
Petabytes of archival high time resolution observations have been captured with the Murchison Widefield Array. The search for Fast Radio Bursts within these using established software has been limited by its inability to scale on supercomputing infrastructure, necessary to meet the associated computational and memory requirements. Hence, past searches used a coarse integration time, in the scale of seconds, or analysed an insufficient number of hours of observations. This paper introduces BLINK, a novel radio interferometry imaging software for low-frequency FRB searches to be run on modern supercomputers. It is implemented as a suite of software libraries executing all computations on GPU, supporting both AMD and NVIDIA hardware vendors. These libraries are designed to interface with each other and to define the BLINK imaging pipeline as a single executable program. Expensive I/O operations between imaging stages are not necessary because the stages now share the same memory space and data representation. BLINK is the first imaging pipeline implementation able to fully run on GPUs as a single process, further supporting AMD hardware and enabling Australian researchers to take advantage of Pawsey’s Setonix supercomputer. In the millisecond-scale time resolution imaging test case illustrated in this paper, representative of what is required for FRB searches, the BLINK imaging pipeline achieves a 3 687x speedup compared to a traditional MWA imaging pipeline employing WSClean.
Landau’s collisionless result for a weakly damped plasma wave is precisely recovered in a weakly collisional, steady state plasma by treating the physics of the narrow collisional boundary layer associated with the resonant electrons. To recover Landau’s results, the collision frequency must be large enough that islands are unable to form and/or the wave amplitude must be small enough to allow linearization. However, the Landau treatment fails once the collision frequency becomes too weak and/or the wave amplitude too large. Remarkably, Landau’s weakly damped plasma wave results require collisions and are shown to be inappropriate in the collisionless limit for a nonlinear, finite amplitude, steady state wave!
We investigate the onset of thermosolutal instabilities in a moderately dense nanoparticle suspension layer with a deformable interface. The suspension is deposited on a solid substrate subjected to a specified constant heat flux. The Soret effect and the action of gravity are taken into account. A mathematical model for the system considered with nanoparticle concentration-dependent density, viscosity, thermal conductivity and the Soret coefficient is presented in dimensional and non-dimensional forms. Linear stability analysis of the obtained base state is carried out using disturbances in the normal mode, and the corresponding eigenvalue problem is derived and numerically investigated. The onset of various instabilities is investigated for cases of both heating and cooling at the substrate. The monotonic solutocapillary instability is found in the case of cooling at the substrate, which exhibits two competing mechanisms that belong to two different disturbance wavelength domains. We identify the occurrence of both monotonic and oscillatory thermocapillary instabilities when the system is heated at the substrate. Furthermore, we show the emergence of the solutal buoyancy instability due to density variation which is promoted by the Soret effect adding nanoparticles heavier than the carrier fluid in the proximity of the layer interface. Transitions from the monotonic to oscillatory thermocapillary instability are found with variation in the gravity- and solutocapillarity-related parameters. Notably, we identify a previously unknown transition from monotonic to the oscillatory thermocapillary instability due to the variation in the strength of the thermal-conductivity stratification coupled with the Soret effect.
The outer solar system is theoretically predicted to harbour an undiscovered planet, often referred to as Planet Nine. Simulations suggest that its gravitational influence could explain the unusual clustering of minor bodies in the Kuiper Belt. However, no observational evidence for Planet Nine has been found so far, as its predicted orbit lies far beyond Neptune, where it reflects only a faint amount of Sunlight. This work aims to find Planet Nine candidates by taking advantage of two far-infrared all-sky surveys, which are IRAS and AKARI. The epochs of these two surveys were separated by 23 years, which is large enough to detect Planet Nine’s $\sim3'$/year orbital motion. We use a dedicated AKARI Far-Infrared point source list for the purpose of our Planet Nine search — AKARI-FIS Monthly Unconfirmed Source List (AKARI-MUSL), which includes sources detected repeatedly only in hours timescale, but not after months. AKARI-MUSL is more advantageous than the AKARI Bright Source Catalogue (AKARI-BSC) for detecting moving and faint objects like Planet Nine with a twice-deeper flux detection limit. We search for objects that moved slowly between IRAS and AKARI detections given in the catalogues. First, we estimated the expected flux and orbital motion of Planet Nine by assuming its mass, distance, and effective temperature to ensure it can be detected by IRAS and AKARI, then applied the positional and flux selection criteria to narrow down the number of sources from the catalogues. Next, we produced all possible candidate pairs including one IRAS source and one AKARI source whose angular separations were limited between 42′ and $69.6'$, corresponding to the heliocentric distance range of 500 – 700 AU and the mass range of 7 – 17M$_{\oplus}$. There are 13 candidate pairs obtained after the selection criteria. After image inspection, we found one good candidate, of which the IRAS source is absent from the same coordinate in the AKARI image after 23 years and vice versa. However, AKARI and IRAS detections are not enough to determine the full orbit of this candidate. This issue leads to the need for follow-up observations, which will determine the Keplerian motion of our Planet Nine candidate.
We introduce a new approach to quantifying dust in galaxies by combining information from the Balmer decrement (BD) and the dust mass ($M_d$). While there is no explicit correlation between these two properties, they jointly probe different aspects of the dust present in galaxies. We explore two new parameters that link BD with $M_d$ by using star formation rate (SFR) sensitive luminosities at several wavelengths (ultraviolet, H$\alpha$, and far-infrared). This analysis shows that combining the BD and $M_d$ in these ways provides new metrics that are sensitive to the degree of optically thick dust affecting the short wavelength emission. We show how these new ‘dust geometry’ parameters vary as a function of galaxy mass, SFR, and specific SFR. We demonstrate that they are sensitive probes of the dust geometry in galaxies, and that they support the ‘maximal foreground screen’ model for dust in starburst galaxies.
This paper discusses variants of Weber’s class number problem in the spirit of arithmetic topology to connect the results of Sinnott–Kisilevsky and Kionke. Let p be a prime number. We first prove the p-adic convergence of class numbers in a ${\mathbb{Z}_{p}}$-extension of a global field and a similar result in a ${\mathbb{Z}_{p}}$-cover of a compact 3-manifold. Secondly, we establish an explicit formula for the p-adic limit of the p-power-th cyclic resultants of a polynomial using roots of unity of orders prime to p, the p-adic logarithm, and the Iwasawa invariants. Finally, we give thorough investigations of torus knots, twist knots, and elliptic curves; we complete the list of the cases with p-adic limits being in ${\mathbb{Z}}$ and find the cases such that the base p-class numbers are small and $\nu$’s are arbitrarily large.