Hostname: page-component-5b777bbd6c-rbv74 Total loading time: 0 Render date: 2025-06-18T13:34:34.798Z Has data issue: false hasContentIssue false

The p-adic limits of class numbers in ${\mathbb{Z}}_p$-towers

Published online by Cambridge University Press:  23 May 2025

JUN UEKI
Affiliation:
Department of Mathematics, Faculty of Science, Ochanomizu University; 2-1-1 Otsuka, Bunkyo-ku, 112-8610, Tokyo, Japan. e-mail:uekijun46@gmail.com
HYUGA YOSHIZAKI
Affiliation:
Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science; 2641, Yamazaki, Noda-shi, 278-8510, Chiba, Japan. e-mail:yoshizaki.hyuga@gmail.com

Abstract

This paper discusses variants of Weber’s class number problem in the spirit of arithmetic topology to connect the results of Sinnott–Kisilevsky and Kionke. Let p be a prime number. We first prove the p-adic convergence of class numbers in a ${\mathbb{Z}_{p}}$-extension of a global field and a similar result in a ${\mathbb{Z}_{p}}$-cover of a compact 3-manifold. Secondly, we establish an explicit formula for the p-adic limit of the p-power-th cyclic resultants of a polynomial using roots of unity of orders prime to p, the p-adic logarithm, and the Iwasawa invariants. Finally, we give thorough investigations of torus knots, twist knots, and elliptic curves; we complete the list of the cases with p-adic limits being in ${\mathbb{Z}}$ and find the cases such that the base p-class numbers are small and $\nu$’s are arbitrarily large.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Apostol, T. M.. Resultants of cyclotomic polynomials. Proc. Amer. Math. Soc. 24 (1970), 457462.10.1090/S0002-9939-1970-0251010-XCrossRefGoogle Scholar
Aubry, Y. and Perret, M.. On the characteristic polynomials of the Frobenius endomorphism for projective curves over finite fields. Finite Fields Appl. 10 (2004), 412431.10.1016/j.ffa.2003.09.005CrossRefGoogle Scholar
Babinkostova, L., Bahr, J. C., Kim, Y. H., Neyman, E. and Taylor, G. K.. Anomalous primes and the elliptic Korselt criterion. J. Number Theory 201 (2019), 108123.10.1016/j.jnt.2019.02.013CrossRefGoogle Scholar
Dehornoy, P.. On the zeroes of the Alexander polynomial of a Lorenz knot. Ann. Inst. Fourier (Grenoble) 65 (2015), 509548.10.5802/aif.2938CrossRefGoogle Scholar
Deninger, C.. p-adic limits of renormalized logarithmic Euler characteristics. Groups Geom. Dyn. 14 (2020), 427467.10.4171/ggd/550CrossRefGoogle Scholar
Diamond, F. and Shurman, J.. A First Course in Modular Forms. Graduate Texts in Math. vol. 228 (Springer-Verlag, New York, 2005).Google Scholar
Elkies, N. D.. The existence of infinitely many supersingular primes for every elliptic curve over Q. Invent. Math. 89 (1987), 561567.10.1007/BF01388985CrossRefGoogle Scholar
Fukuda, T., Komatsu, K. and Morisawa, T.. Weber’s class number one problem. In Iwasawa Theory 2012. Contrib. Math. Comput. Sci. vol. 7 (Springer, Heidelberg, 2014), pp. 221226.10.1007/978-3-642-55245-8_6CrossRefGoogle Scholar
A. G. On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower. Algebra Number Theory 17 (2023), 21512179.10.2140/ant.2023.17.2151CrossRefGoogle Scholar
Gold, R. and Kisilevsky, H.. On geometric $\textbf{Z}_p$ -extensions of function fields. Manuscripta Math. 62 (1988), 145161.10.1007/BF01278975CrossRefGoogle Scholar
Gras, G.. Tate-Shafarevich groups in the cyclotomic $\widehat{\mathbb{Z}}$ -extension and Weber’s class number problem. J. Number Theory 228 (2021), 219252.10.1016/j.jnt.2021.04.019CrossRefGoogle Scholar
Han, S.-G.. On p-adic L-functions and the Riemann-Hurwitz genus formula. Acta Arith. 60 (1991), 97104.10.4064/aa-60-2-97-104CrossRefGoogle Scholar
Hillman, J., Matei, D., and Morishita, M.. Pro-p link groups and p-homology groups. In Primes and Knots. Contemp. Math. vol. 416 (Amer. Math. Soc., Providence, RI, 2006), pp. 121136.10.1090/conm/416/07890CrossRefGoogle Scholar
Hoste, J. and Shanahan, P. D.. A formula for the A-polynomial of twist knots. J. Knot Theory Ramifications 13 (2004), 193209.10.1142/S0218216504003081CrossRefGoogle Scholar
Iwasawa, K.. On $\Gamma $ -extensions of algebraic number fields. Bull. Amer. Math. Soc. 65 (1959), 183226.10.1090/S0002-9904-1959-10317-7CrossRefGoogle Scholar
Kadokami, T. and Mizusawa, Y.. Iwasawa type formula for covers of a link in a rational homology sphere. J. Knot Theory Ramifications 17 (2008), 11991221.10.1142/S0218216508006580CrossRefGoogle Scholar
Kim, S.-G.. Alexander polynomials and orders of homology groups of branched covers of knots. J. Knot Theory Ramifications 18 (2009), 973984.10.1142/S0218216509007300CrossRefGoogle Scholar
Kionke, S.. On p-adic limits of topological invariants. J. London. Math. Soc. (2) 102 (2020), 498534.10.1112/jlms.12326CrossRefGoogle Scholar
Kisilevsky, H.. A generalization of a result of Sinnott. Pacific J. Math. (1997), 225–229. Olga Taussky-Todd: in memoriam.10.2140/pjm.1997.181.225CrossRefGoogle Scholar
Kosters, M. and Wan, D.. Genus growth in $\mathbb{Z}_p$ -towers of function fields. Proc. Amer. Math. Soc. 146 (2018), 14811494.Google Scholar
Lang, S. and Trotter, H.. Frobenius Distributions in $\mathrm{GL}_{2}$ -extensions. Lecture Notes in Math. vol. 504 (Springer-Verlag, Berlin-New York, 1976).Google Scholar
Liu, Y.. Finite-volume hyperbolic 3-manifolds are almost determined by their finite quotient groups. Invent. Math. 231 (2023), 741804.10.1007/s00222-022-01155-4CrossRefGoogle Scholar
Livingston, C.. Seifert forms and concordance. Geom. Topol. 6 (2002), 403408.10.2140/gt.2002.6.403CrossRefGoogle Scholar
Mahler, K.. Ein Beweis der Transzendenz der P-adischen Exponentialfunktion. J. Reine Angew. Math. 169 (1933), 6166.10.1515/crll.1933.169.61CrossRefGoogle Scholar
Mayberry, J. P. and Murasugi, K.. Torsion-groups of abelian coverings of links. Trans. Amer. Math. Soc. 271 (1982), 143173.10.1090/S0002-9947-1982-0648083-1CrossRefGoogle Scholar
Mazur, B.. Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18 (1972), 183266.10.1007/BF01389815CrossRefGoogle Scholar
Mazur, B.. Primes, Knots and Po. Lecture notes for the conference “Geometry, Topology and Group Theory” in honor of the 80th birthday of Valentin Poenaru. https://bpb-us-e1.wpmucdn.com/sites.harvard.edu/dist/a/189/files/2023/01/Primes-Knots-and-Po.pdf. 2012 Google Scholar
McMullen, C. T.. Knots which behave like the prime numbers. Composition. Math. 149 (2013), 12351244.10.1112/S0010437X13007173CrossRefGoogle Scholar
Morishita, M.. Knots and Primes (Universitext. Springer, London, 2012). An introduction to arithmetic topology.10.1007/978-1-4471-2158-9CrossRefGoogle Scholar
Nesterenko, Y. V.. Algebraic independence of p-adic numbers. Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), 159174.Google Scholar
Neukirch, J.. Algebraic Number Theory. Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Sciences], vol 322 (Springer-Verlag, Berlin, 1999).10.1007/978-3-662-03983-0CrossRefGoogle Scholar
Noguchi, A.. A functional equation for the Lefschetz zeta functions of infinite cyclic coverings with an application to knot theory. Topology Proc. 29 (2005), 277291. Spring Topology and Dynamical Systems Conference.Google Scholar
Ochiai, T.. Iwasawa Theory and its Perspective, vol. 1. Math. Surveys Monogr. vol. 272 (American Mathematical Society, Providence, RI, [2023).10.1090/surv/272CrossRefGoogle Scholar
Olson, L. D.. Hasse invariants and anomalous primes for elliptic curves with complex multiplication. J. Number Theory 8 (1976), 397414.10.1016/0022-314X(76)90087-1CrossRefGoogle Scholar
Ozaki, M.. On the p-adic limit of class numbers along a pro-p-extension. Preprint (2022).Google Scholar
PARI Group, T.. PARI/GP version 2.15.0. Univ. Bordeaux. available at http://pari.math.u-bordeaux.fr/. 2022 Google Scholar
Porti, J.. Mayberry-Murasugi’s formula for links in homology 3-spheres. Proc. Amer. Math. Soc. 132 (2004), 34233431 (electronic).10.1090/S0002-9939-04-07458-1CrossRefGoogle Scholar
Rolfsen, D.. Knots and Links. Mathematics Lecture Series, no. 7 (Publish or Perish, Inc., Berkeley, CA, 1976).Google Scholar
Rosen, M.. Number Theory in Function Fields. Graduate Texts in Math. vol. 210 Springer-Verlag, New York, 2002).Google Scholar
Sakuma, M.. The homology groups of abelian coverings of links. Math. Sem. Notes Kobe Univ. 7 (1979), 515530.Google Scholar
Sakuma, M.. On the polynomials of periodic links. Math. Ann. 257 (1981), 487494.10.1007/BF01465869CrossRefGoogle Scholar
Schettler, J.. Generalizations of Iwasawa’s “Riemann-Hurwitz” formula for cyclic p-extensions of number fields. Int. J. Number Theory 10 (2014), 219233.10.1142/S1793042113500905CrossRefGoogle Scholar
Shen, Q. and Shi, S.. Function fields of class number one. J. Number Theory 154 (2015), 375379.10.1016/j.jnt.2015.02.005CrossRefGoogle Scholar
Silverman, J. H.. The Arithmetic of Elliptic Curves. Graduate Texts in Math. 2009 (Springer, Dordrecht, second edition, 2009).10.1007/978-0-387-09494-6CrossRefGoogle Scholar
Stichtenoth, H.. Algebraic Function Fields and Codes. Graduate Texts in Math. vol. 254 (Springer-Verlag, Berlin, second edition, 2009).10.1007/978-3-540-76878-4CrossRefGoogle Scholar
Sumida-Takahashi, H.. Computation of the Iwasawa invariants of certain real abelian fields. J. Number Theory 105 (2004), 235250.10.1016/j.jnt.2003.11.002CrossRefGoogle Scholar
Sumida-Takahashi, H.. Computation of the p-part of the ideal class group of certain real abelian fields. Math. Comp. 76 (2007), 10591071.10.1090/S0025-5718-07-01926-6CrossRefGoogle Scholar
Tange, R.. Fox formulas for twisted Alexander invariants associated to representations of knot groups over rings of S-integers. J. Knot Theory Ramifications 27 (2018), 1850033, 15.10.1142/S0218216518500335CrossRefGoogle Scholar
Tateno, S. and Ueki, J.. The Iwasawa invariants of $\mathbb{Z}_p\def\negativespace{}^d$ -covers of links. Preprint: ArXiv:2401.03258 (2023).Google Scholar
Ueki, J.. On the homology of branched coverings of 3-manifolds. Nagoya Math. J. 213 (2014), 2139.10.1215/00277630-2393795CrossRefGoogle Scholar
Ueki, J.. On the Iwasawa invariants for links and Kida’s formula. Internat. J. Math. 28 (2017), 1750035, 30.10.1142/S0129167X17500355CrossRefGoogle Scholar
Ueki, J.. The profinite completions of knot groups determine the Alexander polynomials. Algebr. Geom. Topol. 18 (2018), 30133030.10.2140/agt.2018.18.3013CrossRefGoogle Scholar
Ueki, J.. p-adic Mahler measure and $\mathbb{Z}$ -covers of links. Ergodic Theory Dynam. Systems 40 (2020), 272288.10.1017/etds.2018.35CrossRefGoogle Scholar
Ueki, J.. Chebotarev links are stably generic. Bull. Lond. Math. Soc. 53 (2021), 82–91.10.1112/blms.12400CrossRefGoogle Scholar
Ueki, J.. Modular knots obey the chebotarev law. Preprint. arXiv:2105.10745. (May 2021).Google Scholar
Ueki, J.. Profinite rigidity for twisted Alexander polynomials. J. Reine Angew. Math. 771 (2021), 171–192.10.1515/crelle-2020-0014CrossRefGoogle Scholar
Ueki, J.. Erratum to Profinite rigidity for twisted Alexander polynomials (J. Reine Angew. Math. 771 (2021), 171–192). J. Reine Angew. Math. 783 (2022), 275278.Google Scholar
Ueki, J. and Yasuda, A.. A note on units and surfaces. In Morishita M., Nakamura, H., and Ueki, J., editors. Proc. Low Dimensional Topology and Number Theory XII 2025, Springer Proceedings in Mathematics & Statistics. Springer. to appear.10.1007/978-981-97-3778-9_11CrossRefGoogle Scholar
Wan, D. and Xi, P.. Lang–Trotter conjecture for CM elliptic curves. Preprint: arXiv:2109.14256. (September 2021).Google Scholar
Washington, L. C.. The non-p-part of the class number in a cyclotomic $\textbf{Z}_{p}$ -extension. Invent. Math. 49 (1978), 8797.10.1007/BF01399512CrossRefGoogle Scholar
Washington, L. C.. Introduction to Cyclotomic Fields. Graduate Texts in Math. vol. 83 (Springer-Verlag, New York, second edition, 1997).10.1007/978-1-4612-1934-7CrossRefGoogle Scholar
Weber, C.. Sur une formule de R. H. Fox concernant l’homologie des revêtements cycliques. Enseign. Math. (2) 25, 261272 (1979).Google Scholar
Weber, H.. Theorie der Abel’schen Zahlkörper. Acta Math. 8 (1886), 193263.10.1007/BF02417089CrossRefGoogle Scholar
Weil, A.. Sur les Courbes Algébriques et les Variétés qui s’en Déduisent, Publ. Inst. Math. Univ. Strasbourg, vol. 7 (Hermann … Cie, Paris, 1948).Google Scholar
Yoshizaki, H.. Generalized Pell’s equations and Weber’s class number problem. J. Théor. Nombres Bordeaux 35 (2023), 373391.10.5802/jtnb.1249CrossRefGoogle Scholar
Zarelua, A. V.. On congruences for the traces of powers of some matrices. Tr. Mat. Inst. Steklova 263 (2008), 85105.Google Scholar