To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A. K. Nandakumaran, Indian Institute of Science Bangalore,P.S. Datti, Tata Institute of Fundamental Research Centre for Applicable Mathematics, Bangalore
We derive boundary conditions for two-dimensional parallel and non-parallel flows at the interface of a homogeneous and isotropic porous medium and an overlying fluid layer by solving a macroscopic closure problem based on the asymptotic solution to the generalised transport equations (GTE) in the interfacial region. We obtained jump boundary conditions at the effective sharp surface dividing the homogeneous fluid and porous layers for either the Darcy or the Darcy–Brinkman equations. We discuss the choice of the location of the dividing surface and propose choices which reduce the distance with the GTE solutions. We propose an ad hoc expression of the permeability distribution within the interfacial region which enables us to preserve the invariance of the fluid-side-averaged velocity profile with respect to the radius $r_0$ of the averaging volume. Solutions to the GTE, equipped with the proposed permeability distribution, compare favourably with the averaged solutions to the pore-scale simulations when the interfacial thickness $\delta$ is adjusted to $r_0$. Numerical tests for parallel and non-parallel flows using the obtained jump boundary conditions or the generalised transport equations show quantitative agreement with the GTE solutions, with experiments and pore-scale simulations. The proposed model of mass and momentum transport is predictive, requiring solely information on the bulk porosity and permeability and the location of the solid matrix of the porous medium. Our results suggest that the Brinkman corrections may be avoided if the ratio $a=\delta /\delta _B$ of the thickness $\delta$ of the interfacial region to the Brinkman penetration depth $\delta _B$ is large enough, as the Brinkman sub-layer is entirely contained within the interfacial region in that case. Our formulation has been extended to anisotropic porous media and can be easily dealt with for three-dimensional configurations.
We present a new radio continuum study of the Large Magellanic Cloud supernova remnant (SNR) MC SNR J0519–6902. With a diameter of $\sim$8 pc, this SNR shows a radio ring-like morphology with three bright regions towards the north, east, and south. Its linear polarisation is prominent with average values of $5\pm1$% and $6\pm1$% at 5 500 and 9 000 MHz, and we find a spectral index of ${-0.62\pm0.02}$, typical of a young SNR. The average rotation measure is estimated at ${-124\pm83}$ rad m$^{-2}$ and the magnetic field strength at ${\sim11}\,\mu$G. We also estimate an equipartition magnetic field of ${72\pm 5}\,\mu$G and minimum explosion energy of E$_\textrm{ min}$ = 2.6$\times10^{48}$ erg. Finally, we identified an H i cloud that may be associated with MC SNR J0519–6902, located in the southeastern part of the remnant, along with a potential wind-bubble cavity.
We examined theoretically, experimentally and numerically the origin of the acoustothermal effect using a standing surface acoustic wave-actuated sessile water droplet system. Despite a wealth of experimental studies and a few recent theoretical explorations, a profound understanding of the acoustothermal mechanism remains elusive. This study bridges the existing knowledge gap by pinpointing the fundamental causes of acoustothermal heating. Theory broadly applicable to any acoustofluidic system at arbitrary Reynolds numbers, going beyond the regular perturbation analysis, is presented. Relevant parameters responsible for the phenomenon are identified and an exact closed-form expression delineating the underlining mechanism is presented. We also examined the impact of viscosity on acoustothermal phenomena by modelling temperature profiles in sessile glycerol–water droplets, underscoring its crucial role in modulating the acoustic field and shaping the resulting acoustothermal profile. Furthermore, an analogy between the acoustothermal effect and the electromagnetic heating is drawn, thereby deepening the understanding of the acoustothermal process.
We undertake a comprehensive investigation into the distribution of in situ stars within Milky Way-like galaxies, leveraging TNG50 simulations and comparing their predictions with data from the H3 survey. Our analysis reveals that 28% of galaxies demonstrate reasonable agreement with H3, while only 12% exhibit excellent alignment in their profiles, regardless of the specific spatial cut employed to define in situ stars. To uncover the underlying factors contributing to deviations between TNG50 and H3 distributions, we scrutinise correlation coefficients among internal drivers (e.g. virial radius, star formation rate [SFR]) and merger-related parameters (such as the effective mass-ratio, mean distance, average redshift, total number of mergers, average spin-ratio, and maximum spin alignment between merging galaxies). Notably, we identify significant correlations between deviations from observational data and key parameters such as the median slope of virial radius, mean SFR values, and the rate of SFR change across different redshift scans. Furthermore, positive correlations emerge between deviations from observational data and parameters related to galaxy mergers. We validate these correlations using the Random Forest Regression method. Our findings underscore the invaluable insights provided by the H3 survey in unravelling the cosmic history of galaxies akin to the Milky Way, thereby advancing our understanding of galactic evolution and shedding light on the formation and evolution of Milky Way-like galaxies in cosmological simulations.
The abundance of dust within galaxies directly influences their evolution. Contemporary models attempt to match this abundance by simulating the processes of dust creation, growth, and destruction. While these models are accurate, they require refinement, especially at earlier epochs. This study aims to compare simulated and observed datasets and identify discrepancies between the two, providing a basis for future improvements. We utilise simulation data from the Simba cosmological simulation suite and observed data from the Galaxy and Mass Assembly (GAMA), a subset of the Cosmic Evolution Survey (G10-COSMOS), and the Hubble Space Telescope (3D-HST). We selected galaxies in the observed and simulated data in a stellar mass range of ($10^{8.59} \lt \text{M}_\odot \lt 10^{11.5}$) and at redshift bins centering around $z = 0.0$, $z = 0.1$, $z = 0.5$, $z = 1.0$, and $z = 1.5$ in a homogeneous dust mass range ($10^{6} \lt \text{M}_D [\text{ M}_\odot] \lt 10^{9}$). Our results show notable deviations between Simba and observed data for dust-poor and rich galaxies, with strong indications that differences in galaxy populations and Simba limitations are the underlying cause rather than the dust physics implemented in Simba itself.
We investigate experimentally the effect of salinity and atmospheric humidity on the drainage and lifetime of thin liquid films motivated by conditions relevant to air–sea exchanges. We show that the drainage is independent of humidity and that the effect of a change in salinity is reflected only through the associated change in viscosity. On the other hand, film lifetime displays a strong dependence on humidity, with more than a tenfold increase between low and high humidities: from a few seconds to tens of minutes. Mixing the air surrounding the film also has a very important effect on lifetime, modifying its distribution and reducing the mean lifetime of the film. From estimations of the evaporation rate, we are able to derive scaling laws that describe well the evolution of lifetime with a change of humidity. Observations of the black film, close to the top where the film ruptures, reveal that this region is very sensitive to local humidity conditions.
Noise source identification has been a long-standing challenge for decades. Although it is known that sound sources are closely related to flow structures, the underlying physical mechanisms remain controversial. This study develops a sound source identification method based on longitudinal and transverse process decomposition (LTD). Large-eddy simulations were performed on the flow around a cylinder at a Reynolds number of 3900. Using the new LTD method, sound sources in the cylinder flow were identified, and the mechanisms linking flow structures with noise generation were discussed in detail. Identifying the physical sound sources from two levels, low-order theory and high-order theory, the physical mechanism of wall sound sources was also analysed. Results indicate that the sound sources in the flow field mainly come from the leading edge, shear layer and wake region of the cylinder. The high-order theory reveals that sound sources are correlated with the spatio-temporal evolution of enstrophy, vortex stretching and surface deformation processes, this reflecting the coupling between transversal and longitudinal flow fields. The boundary thermodynamic flux and boundary dilatation flux distribution of the cylinder were analysed. Results indicate that the wall sound sources mainly come from the separation point and have a disorderly distribution on the leeward side of the cylinder, which is the main region where longitudinal variables enter the fluid from the wall surface, and the wall sound source is related to the boundary enstrophy flux.
Providing in-depth coverage and comprehensive discussion on essential concepts of electronics engineering, this textbook begins with detailed explanation of classification of semiconductors, transport phenomena in semiconductor and Junction diodes. It covers circuit modeling techniques for bipolar junction transistors, used in designing amplifiers. The textbook discusses design construction and operation principle for junction gate field-effect transistor, silicon controlled rectifier and operational amplifier. Two separate chapters on Introduction to Communication Systems and Digital Electronics covers topics including modulation techniques, logic circuits, De Morgan's theorem and digital circuits. Applications of oscillators, silicon controlled rectifier and operational amplifier are covered in detail. Pedagogical features including solved problems, multiple choice questions and unsolved exercises are interspersed throughout the textbook for better understating of concepts. This text is the ideal resource for first year undergraduate engineering students taking an introductory, single-semester course in fundamentals of electronics engineering/principles of electronics engineering.
Numerous studies showed that the flow and transport phenomena in angstrom channels are different from existing understandings. In this work, we investigate the electrokinetic phenomena in a charged angstrom channel, including homogeneous and heterogeneous charge distributions at the wall to mimic the charging mechanisms of electrified metal-like surfaces and deprotonated dielectric surfaces, respectively. Our results show that both the streaming current and the flow velocity linearly increase as the applied pressure increases in a homogeneously charged system. However, in a heterogeneously charged system, the streaming current is activated only when the applied pressure exceeds a critical threshold. This behaviour arises from the strong Coulomb interactions between counterions and the surface charge, manifesting as an obvious nonlinear feature. The dissociation of counterions from the surface charge may not only cause pressure-dependent streaming conductance but also reduce the friction coefficient of the system, thus the flow resistance, when the system friction is governed by the bound ions. We found that such pressure-dependent streaming conductance gradually weakens as the channel size increases and reaches the regime of classical nanofluidic theories. Taking one-dimensional non-equilibrium statistics and Markov chains for the sequence evolution of bound-ion dissociation, our theory can well explain the pressure-dependent streaming conductance and water permeability in angstrom charged channels. Voltage-driven nonlinear ionic transport and electro-osmosis were also observed in heterogeneously charged systems. Our findings will be helpful for understanding the ionic transport in angstrom-scale channels and possibly useful in ion separations.
The kinetic stability of collisionless, sloshing beam-ion ($45^\circ$ pitch angle) plasma is studied in a three-dimensional (3-D) simple magnetic mirror, mimicking the Wisconsin high-temperature superconductor axisymmetric mirror experiment. The collisional Fokker–Planck code CQL3D-m provides a slowing-down beam-ion distribution to initialize the kinetic-ion/fluid-electron code Hybrid-VPIC, which then simulates free plasma decay without external heating or fuelling. Over $1$–$10\;\mathrm{\unicode{x03BC} s}$, drift-cyclotron loss-cone (DCLC) modes grow and saturate in amplitude. The DCLC scatters ions to a marginally stable distribution with gas-dynamic rather than classical-mirror confinement. Sloshing ions can trap cool (low-energy) ions in an electrostatic potential well to stabilize DCLC, but DCLC itself does not scatter sloshing beam-ions into the said well. Instead, cool ions must come from external sources such as charge-exchange collisions with a low-density neutral population. Manually adding cool $\mathord {\sim } 1\;\mathrm{keV}$ ions improves beam-ion confinement several-fold in Hybrid-VPIC simulations, which qualitatively corroborates prior measurements from real mirror devices with sloshing ions.
The GLEAM 4-Jy (G4Jy) Sample is a thorough compilation of the ‘brightest’ radio sources in the southern sky (Declination $ \lt 30^{\circ}$), as measured at 151 MHz ($S_{\mathrm{151\,MHz}} \gt 4.0$ Jy) with the Murchison Widefield Array (MWA), through the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey. In addition to flux-density measurements, the G4Jy catalogue (https://github.com/svw26/G4Jy.) provides host-galaxy identifications (through careful visual-inspection) and four sets of spectral indices. Despite their brightness in the radio, many of these sources are poorly studied, with the vast majority lacking a spectroscopic redshift in published work. This is crucial for studying the intrinsic properties of the sources, and so we conduct a multi-semester observing campaign on the Southern African Large Telescope (SALT), with optical spectroscopy enabling us to provide new redshifts to the astronomical community. Initial results show that not all of the host galaxies exhibit emission-line spectra in the optical ($\sim$4 500–7 500Å), which illustrates the importance of radio-frequency selection (rather than optical selection) for creating an unbiased sample of active galactic nuclei. By combining SALT redshifts with those from the 6-degree Field Galaxy Survey (6dFGS) and the Sloan Digital Sky Survey (SDSS), we calculate radio luminosities and linear sizes for 299 G4Jy sources (which includes one newly-discovered giant radio-galaxy, G4Jy 604). Furthermore, with the highest redshift acquired (so far) being $z \sim 2.2$ from SDSS, we look forward to evolution studies of this complete sample, as well as breaking degeneracies in radio properties with respect to, for example, the galaxy environment.
This study characterises the radio luminosity functions (RLFs) for star forming galaxies (SFGs) and active galactic nuclei (AGN) using statistical redshift estimation in the absence of comprehensive spectroscopic data. Sensitive radio surveys over large areas detect many sources with faint optical and infrared counterparts, for which redshifts and spectra are unavailable. This challenges our attempt to understand the population of radio sources. Statistical tools are often used to model parameters (such as redshift) as an alternative to observational data. Using the data from GAMA G23 and EMU early science observations, we explore simple statistical techniques to estimate the redshifts in order to measure the RLFs of the G23 radio sources as a whole and for SFGs and AGN separately. Redshifts and AGN/SFG classifications are assigned statistically for those radio sources without spectroscopic data. The calculated RLFs are compared with existing studies, and the results suggest that the RLFs match remarkably well for low redshift galaxies with an optical counterpart. We use a more realistic high redshift distribution to model the redshifts of (most likely) high redshift radio sources and find that the LFs from our approach match well with measured LFs. We also look at strategies to compare the RLFs of radio sources without an optical counterpart to existing studies.
One of the critical challenges in future high-current tokamaks is the avoidance of runaway electrons during disruptions. Here, we investigate disruptions mitigated with combined deuterium and noble gas injection in SPARC. We use multi-objective Bayesian optimisation of the densities of the injected material, taking into account limits on the maximum runaway current, the transported fraction of the heat loss and the current quench time. The simulations are conducted using the numerical framework Dream (disruption runaway electron analysis model). We show that during deuterium operation, runaway generation can be avoided with material injection, even when we account for runaway electron generation from deuterium–deuterium induced Compton scattering. However, when including the latter, the region in the injected-material-density space corresponding to successful mitigation is reduced. During deuterium–tritium operation, acceptable levels of runaway current and transported heat losses are only obtainable at the highest levels of achievable injected deuterium densities. Furthermore, disruption mitigation is found to be more favourable when combining deuterium with neon, compared with deuterium combined with helium or argon.
Embedding the intrinsic symmetry of a flow system in training its machine learning algorithms has become a significant trend in the recent surge of their application in fluid mechanics. This paper leverages the geometric symmetry of a four-roll mill (FRM) to enhance its training efficiency. Stabilising and precisely controlling droplet trajectories in an FRM is challenging due to the unstable nature of the extensional flow with a saddle point. Extending the work of Vona & Lauga (Phys. Rev. E, vol. 104(5), 2021, p. 055108), this study applies deep reinforcement learning (DRL) to effectively guide a displaced droplet to the centre of the FRM. Through direct numerical simulations, we explore the applicability of DRL in controlling FRM flow with moderate inertial effects, i.e. Reynolds number $\sim \mathcal{O}(1)$, a nonlinear regime previously unexplored. The FRM’s geometric symmetry allows control policies trained in one of the eight sub-quadrants to be extended to the entire domain, reducing training costs. Our results indicate that the DRL-based control method can successfully guide a displaced droplet to the target centre with robust performance across various starting positions, even from substantially far distances. The work also highlights potential directions for future research, particularly focusing on efficiently addressing the delay effects in flow response caused by inertia. This study presents new advances in controlling droplet trajectories in more nonlinear and complex situations, with potential applications to other nonlinear flows. The geometric symmetry used in this cutting-edge reinforcement learning approach can also be applied to other control methods.
Continuing our work on group-theoretic generalisations of the prime Ax–Katz Theorem, we give a lower bound on the p-adic divisibility of the cardinality of the set of simultaneous zeros $Z(f_1,f_2,\dots,f_r)$ of r maps $f_j\,{:}\,A\rightarrow B_j$ between arbitrary finite commutative groups A and $B_j$ in terms of the invariant factors of $A, B_1,B_2, \cdots,B_r$ and the functional degrees of the maps $f_1,f_2, \dots,f_r$.
In this study, we conducted an electrical analysis of the effects of cold plasma on the properties of distilled water, using a corona discharge in a tip–plane configuration. The discharge was initiated by applying a voltage of 7.17 kV with a 2 mm gap between the tip and the water surface. We investigated the impact of plasma treatment on the total dissolved solids (TDS) and conductivity of 20 mL of distilled water, with exposure times ranging from 2 to 12 min. The results show that plasma treatment leads to a significant increase in conductivity and TDS, with a proportional increase relative to the exposure time. In addition to these measurements, we performed a detailed electrical analysis to evaluate the energy efficiency of the plasma treatment. This analysis involved calculating the useful power and energy efficiency using an equivalent electrical model of the corona discharge reactor, as direct measurement of these parameters is challenging in this context. The model allowed us to calculate energy consumption and analyse the electrical behaviour of the system throughout the treatment process. This study also enables us to monitor, control and optimize the energy during plasma treatment, providing insights into the energy dynamics involved. The findings have potential applications in improving energy efficiency in industrial and environmental processes.
The dynamics of flow over an isolated surface-mounted hemisphere are investigated with tomographic particle image velocimetry (PIV). The 10 mm height hemisphere is completely submerged in the laminar boundary layer, and the height-based Reynolds number is 1530. The evolution of typical coherent structures around the hemisphere are discussed, with emphasis on the hairpin vortex (HV) and side hairpin vortex (SHV) formed periodically in the middle and both sides of the wake, respectively. Proper orthogonal decomposition (POD) analysis is conducted to explore the vortex dynamics. The shedding processes of the HV and SHV are each dominated by two different POD modes with correspondingly different characteristic frequencies, which has not been reported before in the literature. Furthermore, the coexistence of symmetric and asymmetric shedding patterns is explored for the first time in the shedding process of the HV at such a low Reynolds number. The asymmetric behaviour is controlled by the asymmetric shedding POD mode, whose dominant frequency is exactly half of the symmetric mode. In addition, SHVs on both sides of the wake are throughout formed and shed alternately, and the streamwise extensions of a horseshoe vortex also oscillate asymmetrically, which are responsible for the formation of the asymmetric shedding pattern of the HV. These findings help to fill the gaps in the related field and contribute to studies on the vortex dynamics of the flow over a hemisphere.