To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications in physics, engineering, multivariate statistics and beyond. This volume is based on a Fall 2010 MSRI program which generated the solution of long-standing questions on universalities of Wigner matrices and beta-ensembles and opened new research directions especially in relation to the KPZ universality class of interacting particle systems and low-rank perturbations. The book contains review articles and research contributions on all these topics, in addition to other core aspects of random matrix theory such as integrability and free probability theory. It will give both established and new researchers insights into the most recent advances in the field and the connections among many subfields.
The skin-friction coefficient is a dimensionless quantity defined by the wall shear stress exerted on an object moving in a fluid, and it decreases as the Reynolds number increases for wall-bounded turbulent flows over a flat plate. In this work, a novel transformation, based on physical and asymptotic analyses, is proposed to map the skin-friction relation of high-speed turbulent boundary layers (TBLs) for air described by the ideal gas law to the incompressible skin-friction relation. Through this proposed approach, it has been confirmed theoretically that the transformed skin-friction coefficient $C_{f,i}$, and the transformed momentum-thickness Reynolds number $Re_{\theta ,i}$ for compressible TBLs with and without heat transfer, follow a general scaling law that aligns precisely with the incompressible skin-friction scaling law, expressed as $ (2/C_{f,i} )^{1/2}\propto \ln Re_{\theta ,i}$. Furthermore, the reliability of the skin-friction scaling law is validated by compressible TBLs with free-stream Mach number ranging from $0.5$ to $14$, friction Reynolds number ranging from $100$ to $2400$, and the wall-to-recovery temperature ratio ranging from $0.15$ to $1.9$. In all of these data, $ (2/C_{f,i} )^{1/2}$ and $\ln Re_{\theta ,i}$ based on the present theory collapse to the incompressible relation, with a squared Pearson correlation coefficient reaching an impressive value $0.99$, significantly exceeding $0.85$ and $0.86$ based on the established van Driest II and the Spalding–Chi transformations, respectively.
Here, we show that the thrust force of oscillating airfoils calculated within the linearised potential flow approach by means of the vortex impulse theory coincides with the one resulting from the integration of the unsteady pressure distribution around the solid obtained by Garrick (1936) when the vertical component of the wake velocity is calculated self-consistently and the analysis retains the contribution of the flux of horizontal momentum induced by the starting vortex. The limitations of the self-consistent linearised potential flow approach for predicting the thrust force of airfoils oscillating periodically with small amplitudes but large values of the reduced frequency are also discussed, as well as the reasons behind the ability of other results in the literature to approximate measurements better than Garrick’s theory. In fact, for those cases in which the airfoil oscillates periodically, the flux of horizontal momentum induced by the starting vortex is negligible and the vortices in the wake are convected parallel to the free-stream velocity, we have deduced an equation for the mean thrust coefficient which differs from previously published results and is in agreement with experimental and numerical results. In addition, for those cases in which the airfoil is suddenly set into motion, we have also deduced an equation that retains the effect of the starting vortex and correctly quantifies the transient thrust force.
Let p be an odd prime, and suppose that $E_1$ and $E_2$ are two elliptic curves which are congruent modulo p. Fix an Artin representation $\tau\,{:}\,G_{F}\rightarrow \mathrm{GL}_2(\mathbb{C})$ over a totally real field F, induced from a Hecke character over a CM-extension $K/F$. Assuming $E_1$ and $E_2$ are ordinary at p, we compute the variation in the $\mu$- and $\lambda$-invariants for the $\tau$-part of the Iwasawa Main Conjecture, as one switches from $E_1$ to $E_2$. Provided an Euler system exists, it will follow directly that IMC$(E_1,\tau)$ is true if and only if IMC$(E_2,\tau)$ is true.
The function of aortic heart valves is to prevent regurgitant flow from the aorta into the left ventricle. A higher regurgitant flow is observed in bileaflet mechanical heart valves (BMHVs) compared with bioprosthetic heart valves (BHVs) because of their delayed closure. Here, we investigate this behaviour through fluid–structure interaction simulations of a BMHV compared with a trileaflet mechanical heart valve (TMHV) and a BHV under similar conditions. We find that the TMHV and BHV begin to close during the systolic deceleration, whereas BMHV only begins to close when the flow reverses. We found this to be related to hemodynamics as the TMHV and BHV, when fully opened, generate a central jet-dominant flow, whereas the BMHV generates triple jets with lateral jets being wider than its central jet. The flow deceleration of the central jet during late systole is higher than that of the sinuses, which results in a lower pressure in the central region than the sinuses to drive the leaflets of the TMHV and BHV towards the centre for closure. Conversely, the pressure on the sinus- and central flow-sides of the BMHV leaflets is nearly the same until the end of systole. We, contrary to what classically believed, did not find any evidence of sinus vortices generating high pressure or viscous stresses to initiate valve closure. Overall, the results suggest that the generation of a strong central jet and the direction of the leaflets’ closure towards the centre are the design principles to ensure an early valve closure and minimise regurgitation.
We present the measurements of the decay of stationary turbulence at Reynolds numbers based on the Taylor microscale $Re_{\lambda }=493, 599, 689$ produced in a large-scale von Kármán flow using stereoscopic particle image velocimetry. First, steady-state conditions were established, after which the impellers were simultaneously and abruptly stopped, and the turbulent decay was measured over 10–20 impeller rotation periods. A total of 258 decay experiments were performed. The temporal evolution of the ensemble-averaged turbulent kinetic energy (TKE) showed excellent agreement over all $Re_{\lambda }$ and exhibited two distinct phases: a short, initial transition phase where the TKE remained almost constant due to the inertia of the flow and lasted approximately $0.4$ impeller rotations, followed by a classical power-law decay. To extract the decay exponent $n$, a curve-fitting function based on a one-dimensional energy spectrum was used, and successfully captured the entire measured decay process. A value $n=1.62$ was obtained based on ensemble-averaged TKE. However, different decay exponents were found for individual velocity components: $n=1.38$ for the axial component consistent with various reports in the literature and Loitsiansky’s prediction ($n=1.43$), and $n=1.99$ for the radial and circumferential components indicating saturation/confinement effects. Similarly, the longitudinal integral length scale in the axial direction grew as $L\propto t^{2/7}$, whereas it remained nearly constant in the radial direction. Finally, the evolution of the ensemble-averaged velocity gradients showed that after the impellers were stopped, the mean flow pattern persisted for a short time before undergoing a large-scale reversal before the onset of the turbulent decay.
The transport of a passive scalar at unity Schmidt number in a turbulent flow over a random sphere pack is investigated by direct numerical simulation. A bed-normal scalar flux is introduced by prescribed scalar concentration values at the bottom and top domain boundaries, whereas sphere surfaces are impermeable to scalar fluxes. We analyse eight different cases characterised by friction Reynolds numbers $Re_\tau \in [150, 500]$ and permeability Reynolds numbers $Re_K \in [0.4, 2.8]$ at flow depth-to-sphere diameter ratios of $h/D \in \{ 3, 5, 10 \}$. The dimensionless roughness heights lie within $k_s^+ \in [20,200]$. The free-flow region is dominated by turbulent scalar transport and the effective diffusivity scales with flow depth and friction velocity. Near the interface, dispersive scalar transport and molecular diffusion gain importance, while the normalised near-interface effective diffusivity is approximately proportional to $Re_K^2$. Even without a macroscopic bed topography, local hotspots of dispersive scalar transport are observed (‘chimneys’), which are linked to strong spatial variations in the time-averaged scalar concentration field. The form-induced production of temporal scalar fluctuations, however, goes along with a homogenisation of those spatial variations of the scalar concentration field due to turbulent fluid motion. Accordingly, form-induced production determines the interaction of turbulent and dispersive scalar transport at the interface. With increasing $Re_K$, momentum from the free-flow region entrains deeper into the sediment bed, such that the form-induced production intensifies and peaks at lower positions. As a result, the transition from dispersive to turbulent scalar transport is observed deeper inside the sphere pack.
Riboswitches are RNA elements with a defined structure found in noncoding sections of genes that allow the direct control of gene expression by the binding of small molecules functionally related to the gene product. In most cases, this is a metabolite in the same (typically biosynthetic) pathway as an enzyme (or transporter) encoded by the gene that is controlled. The structures of many riboswitches have been determined and this provides a large database of RNA structure and ligand binding. In this review, we extract general principles of RNA structure and the manner or ligand binding from this resource.
Weighted sieves are used to detect numbers with at most S prime factors with $S \in \mathbb{N}$ as small as possible. When one studies problems with two variables in somewhat symmetric roles (such as Chen primes, that is primes p such that $p+2$ has at most two prime factors), one can utilise the switching principle. Here we discuss how different sieve weights work in such a situation, concentrating in particular on detecting a prime along with a product of at most three primes.
As applications, we improve on the works of Yang and Harman concerning Diophantine approximation with a prime and an almost prime, and prove that, in general, one can find a pair $(p, P_3)$ when both the original and the switched problem have level of distribution at least $0.267$.
In this study, we experimentally examine the behaviour of a free-falling rigid sphere penetrating a quiescent liquid pool. Observations of the sphere trajectory in time are made using two orthogonally placed high-speed cameras, yielding the velocity and acceleration vectors through repeated differentiation of the time-resolved trajectories. The novelty of this study is twofold. On the one hand, a methodology is introduced by which the instantaneous forces acting on the sphere can be derived by tracking the sphere trajectory. To do this, we work in a natural coordinate system aligned with the pathline of the sphere. In particular, the instantaneous lift and drag forces can be separately estimated. On the other hand, the results reveal that when decelerating, the sphere experiences a very high drag force compared with steady flow. This is attributed to an upstream shift of the mean boundary-layer separation. The sphere also experiences significant lift force fluctuations, attributed to unsteady and asymmetric wake fluctuations. The trajectories can be reduced to three stages, common in duration for all initial Reynolds numbers and density ratios when expressed in dimensionless time. In addition, the sphere velocity and deceleration magnitude for different initial parameters exhibit a high degree of uniformity when expressed in dimensionless form. This offers prediction capability of how far a sphere penetrates in time and the forces acting on it.
We present a unified framework derived from the total heat flux equation, enabling the direct formulation of the relationship between mean temperature and velocity fields, as well as the development of mean temperature scalings in compressible turbulent channel flows. The proposed mean temperature–velocity relationship, combined with a simple damping function model for the mixed Prandtl number, demonstrates high efficacy in channels with both symmetric and asymmetric thermal boundary conditions across a range of Mach and Reynolds numbers. In contrast, the state-of-the-art generalised Reynolds analogy (GRA) relation (Zhang et al., 2014, J. Fluid Mech., vol. 739, pp. 392–420) is shown to be insufficient for asymmetric cases due to mismatched boundary conditions at the effective boundary layer edge. By introducing a mean temperature decomposition, we clarify that while the GRA relation effectively characterises the component associated with turbulence production and viscous dissipation, it fails to account for the contribution arising from non-zero edge total heat flux. Furthermore, we rigorously derive mean temperature transformations compatible with arbitrary velocity scalings for the first time. These findings provide some physical insights into the mean momentum and heat transport in compressible wall-bounded turbulence, and may be helpful for developing near-wall models.
The second edition of this engaging textbook for advanced undergraduate students and beginning graduates covers all the core subjects in linear algebra. It has a unique emphasis on integrating ideas from analysis, in addition to pure algebra, and features a balance of abstraction, practicality, and contemporary applications. Four chapters examine some of the most important of these applications, including quantum mechanics, machine learning, data science, and quantum information. The material is supplemented by a rich collection of exercises designed for students from diverse backgrounds, including a wealth of newly added ones in this edition. Selected solutions are provided at the back of the book for use in self-study, and full solutions are available online to instructors.
Wind tunnel experiments are performed to investigate stall and reattachment transients for an aerofoil and wing model at low chord Reynolds numbers ($8\times 10^4\leqslant {{Re}}_c\leqslant 1\times 10^5$) where a laminar separation bubble (LSB) may form on the suction surface. Direct force measurements and particle image velocimetry (PIV) are employed simultaneously to characterise the transient aerodynamic loading and flow field development. The imposed changes in operating conditions leading to stall and reattachment include changes in angle of attack at multiple pitch rates and changes in Reynolds number. The evolution of the lift coefficient is consistent with dynamic stall at higher Reynolds numbers, with a reduction in time delay between the passing of the static stall condition and the loss of lift for increasing pitch rate. During an increase in angle of attack, the separation bubble moves upstream prior to rapidly bursting, whereas for a decrease of Reynolds number, the LSB undergoes a more gradual monotonic increase in length prior to bursting. In contrast to notable differences in the aerodynamic loading and flow field development for different types of transients leading to LSB bursting, the process of LSB formation is less sensitive to the type of imposed change in operating conditions. Spanwise PIV measurements on the aerofoil and wing models indicate that the spanwise flow development is also insensitive to the type of imposed transient during LSB bursting and formation.
The high redshift ‘little red dots’ (LRDs) detected with the James Webb Space Telescope are considered to be the cores of emerging galaxies that host active galactic nuclei (AGN). For the first time, we compare LRDs with local compact stellar systems and an array of galaxy-morphology-dependent stellar mass-black hole mass scaling relations in the $M_\mathrm{ bh}$–$M_{\star}$ diagrams. When considering the 2023–2024 masses for LRDs, they are not equivalent to nuclear star clusters (NSCs), with the latter having higher $M_\mathrm{ bh}/M_{\star}$ ratios. However, the least massive LRDs exhibit similar $M_\mathrm{ bh}$ and $M_\mathrm{ \star,gal}$ values as ultracompact dwarf (UCD) galaxies, believed to be the cores of stripped/threshed galaxies. We show that the LRDs span the $M_\mathrm{ bh}$–$M_\mathrm{ \star,gal}$ diagram from UCD galaxies to primaeval lenticular galaxies. In contrast, local spiral galaxies and the subset of major-merger-built early-type galaxies define $M_\mathrm{ bh}$–$M_{\star,gal}$ relations that are offset to higher stellar masses. Based on the emerging 2025 masses for LRDs, they may yet have similarities with NSCs, UCD galaxies, and green peas. Irrespective of this developing situation, we additionally observe that low-redshift galaxies with AGN align with the quasi-quadratic or steeper black hole scaling relations defined by local disc galaxies with directly measured black hole masses. This highlights the benefits of considering a galaxy’s morphology – which reflects its accretion and merger history – to understand the coevolution of galaxies and their black holes. Future studies of spatially resolved galaxies with secure masses at intermediate-to-high redshift hold the promise of detecting the emergence and evolution of the galaxy-morphology-dependent $M_\mathrm{ bh}$–$M_{\star}$ relations.
We examine the optical counterparts of the 1 829 neutral hydrogen (H i) detections in three pilot fields in the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) using data from the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Surveys DR10. We find that 17% (315) of the detections are optically low surface brightness galaxies (LSBGs; mean g-band surface brightness within 1 $ R_e$ of $\gt 23$ mag arcsec$^{-2}$) and 3% (55) are optically ‘dark’. We find that the gas-rich WALLABY LSBGs have low star formation efficiencies, and have stellar masses spanning five orders of magnitude, which highlights the diversity of properties across our sample. 75% of the LSBGs and all of the dark H i sources had not been catalogued prior to WALLABY. We examine the optically dark sample of the WALLABY pilot survey to verify the fidelity of the catalogue and investigate the implications for the full survey for identifying dark H i sources. We assess the H i detections without optical counterparts and identify 38 which pass further reliability tests. Of these, we find that 13 show signatures of tidal interactions. The remaining 25 detections have no obvious tidal origin, so are candidates for isolated galaxies with high H i masses, but low stellar masses and star-formation rates. Deeper H i and optical follow-up observations are required to verify the true nature of these dark sources.
Let $\pi$ be an irreducible cuspidal automorphic representation of ${\mathrm{GL}}_n(\mathbb{A}_{\mathbb{Q}})$ with associated L-function $L(s, \pi)$. We study the behaviour of the partial Euler product of $L(s, \pi)$ at the centre of the critical strip. Under the assumption of the Generalised Riemann Hypothesis for $L(s, \pi)$ in conjunction with the Ramanujan–Petersson conjecture as necessary, we establish an asymptotic, off a set of finite logarithmic measure, for the partial Euler product at the central point, which confirms a conjecture of Kurokawa (2012). As an application, we obtain results towards Chebyshev’s bias in the recently proposed framework of Aoki–Koyama (2023).
Turbulent Taylor–Couette flow displays traces of axisymmetric Taylor vortices even at high Reynolds numbers. With this motivation, Feldmann & Avila (2025) J. Fluid Mech, 1008, R1, carry out long-time numerical simulations of axisymmetric high-Reynolds-number Taylor–Couette flow. They find that the Taylor vortices, using the only degree of freedom that remains available to them, carry out Brownian motion in the axial direction, with a diffusion constant that diverges as the number of rolls is reduced below a critical value.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
The stars of the Milky Way carry the chemical history of our Galaxy in their atmospheres as they journey through its vast expanse. Like barcodes, we can extract the chemical fingerprints of stars from high-resolution spectroscopy. The fourth data release (DR4) of the Galactic Archaeology with HERMES (GALAH) Survey, based on a decade of observations, provides the chemical abundances of up to 32 elements for 917 588 stars that also have exquisite astrometric data from the Gaia satellite. For the first time, these elements include life-essential nitrogen to complement carbon, and oxygen as well as more measurements of rare-earth elements critical to modern-life electronics, offering unparalleled insights into the chemical composition of the Milky Way. For this release, we use neural networks to simultaneously fit stellar parameters and abundances across the whole wavelength range, leveraging synthetic grids computed with Spectroscopy Made Easy. These grids account for atomic line formation in non-local thermodynamic equilibrium for 14 elements. In a two-iteration process, we first fit stellar labels to all 1 085 520 spectra, then co-add repeated observations and refine these labels using astrometric data from Gaia and 2MASS photometry, improving the accuracy and precision of stellar parameters and abundances. Our validation thoroughly assesses the reliability of spectroscopic measurements and highlights key caveats. GALAH DR4 represents yet another milestone in Galactic archaeology, combining detailed chemical compositions from multiple nucleosynthetic channels with kinematic information and age estimates. The resulting dataset, covering nearly a million stars, opens new avenues for understanding not only the chemical and dynamical history of the Milky Way but also the broader questions of the origin of elements and the evolution of planets, stars, and galaxies.