To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let F be a p-adic field. Consider a dual pair where SO(2n+1)+ is the split orthogonal group and is the metaplectic cover of the symplectic group Sp(2n) over F. We study lifting of characters between orthogonal and metaplectic groups. We say that a representation of SO(2n+1)+ lifts to a representation of if their characters on corresponding conjugacy classes are equal up to a transfer factor. We study properties of this transfer factor, which is essentially the character of the difference of the two halves of the oscillator representation. We show that the lifting commutes with parabolic induction. These results were motivated by the paper ‘Lifting of characters on orthogonal and metaplectic groups’ by Adams who considered the case F=ℝ.
This paper gives a complete description of the spherical unitary dual of split classical real and p-adic groups. The proof makes heavy use of the affine graded Hecke algebra.
In this paper, we introduce a new algebraic notion, weakly symmetric Lie algebras, to give an algebraic description of an interesting class of homogeneous Riemann-Finsler spaces, weakly symmetric Finsler spaces. Using this new definition, we are able to give a classification of weakly symmetric Finsler spaces with dimensions 2 and 3. Finally, we show that all the non-Riemannian reversible weakly symmetric Finsler spaces we find are non-Berwaldian and with vanishing $\text{S}$-curvature. This means that reversible non-Berwaldian Finsler spaces with vanishing $\text{S}$-curvature may exist at large. Hence the generalized volume comparison theorems due to $\text{Z}$. Shen are valid for a rather large class of Finsler spaces.
Let $G$ be a connected semisimple split group over a $p$-adic field. We establish the explicit link between principal nilpotent orbits and the irreducible constituents of principal series in terms of $L$-group objects.
We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s theorem for the group Fourier transform.
Colmez has given a recipe to associate a smooth modular representation Ω(W) of the Borel subgroup of GL2(Qp) to a -representation W of by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W) explicitly and we prove that if W is irreducible and dim (W)=2, then Ω(W) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by Breuil’s correspondence.
Let G be the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8 of rank four. The cohomology of the space of automorphic forms on G has a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomology HqEis(G,E) of G in the case of regular coefficients E. It is spanned only by holomorphic Eisenstein series. For non-regular coefficients E we really have to detect the poles of our Eisenstein series. Since G is not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1981), 297–355; F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. (2) 127 (1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolic P0 of G. Having collected this information, we determine the square-integrable Eisenstein cohomology supported by P0 with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.
This paper gives the classification of the Whittaker unitary dual for affine graded Hecke algebras of type E. By the Iwahori–Matsumoto involution, this is also equivalent to the classification of the spherical unitary dual for type E. Together with some results of Barbasch and Moy (D. Barbasch and A. Moy, Unitary spherical spectrum for p-adic classical groups, Acta Appl. Math. 44 (1996), 3–37; D. Barbasch, The spherical unitary spectrum of split classical real and p-adic groups, Preprint (2006), math/0609828) and Ciubotaru (D. Ciubotaru, The Iwahori spherical unitary dual of the split group of type F4, Represent. Theory 9 (2005), 94–137), this work completes the classification of the Whittaker Iwahori-spherical unitary dual or, equivalently, the spherical unitary dual of any split p-adic group.
We describe equations of the universal torsors over del Pezzo surfaces of degrees from 2 to 5 over an algebraically closed field in terms of the equations of the corresponding homogeneous space G/P. We also give a generalization for fields that are not algebraically closed.
In this paper, we prove that the first occurrence of global theta liftings from any orthogonal group to either symplectic groups or metaplectic groups can be characterized completely in terms of the location of poles of certain Eisenstein series. This extends the work of Kudla and Rallis and the work of Moeglin to all orthogonal groups. As applications, we obtain results about basic structures of cuspidal automorphic representations and the domain of holomorphy of twisted standard L-functions.
This paper shows the existence and uniqueness of Klyachko models for irreducible unitary representations of $\text{G}{{\text{L}}_{5}}\left( \mathcal{F} \right)$, where $\mathcal{F}$ is a $p$-adic field. It is an extension of the work of Heumos and Rallis on $\text{G}{{\text{L}}_{4}}\left( \mathcal{F} \right)$.
The admissible representations of a real reductive group G are known by work of Langlands, Knapp, Zuckerman and Vogan. This paper describes an effective algorithm for computing the irreducible representations of G with regular integral infinitesimal character. The algorithm also describes structure theory of G, including the orbits of K(ℂ) (a complexified maximal compact subgroup) on the flag variety. This algorithm has been implemented on a computer by the second author, as part of the ‘Atlas of Lie Groups and Representations’ project.
Let k be an algebraically closed field of characteristic greater than 2, and let F=k((t)) and G=𝕊p2d. In this paper we propose a geometric analog of the Weil representation of the metaplectic group . This is a category of certain perverse sheaves on some stack, on which acts by functors. This construction will be used by Lysenko (in [Geometric theta-lifting for the dual pair S𝕆2m, 𝕊p2n, math.RT/0701170] and subsequent publications) for the proof of the geometric Langlands functoriality for some dual reductive pairs.
Given a compact p-adic Lie group G over a finite unramified extension L/ℚp let GL/ℚp be the product over all Galois conjugates of G. We construct an exact and faithful functor from admissible G-Banach space representations to admissible locally L-analytic GL/ℚp-representations that coincides with passage to analytic vectors in the case L=ℚp. On the other hand, we study the functor ‘passage to analytic vectors’ and its derived functors over general basefields. As an application we compute the higher analytic vectors in certain locally analytic induced representations.
We describe the supercuspidal representations of Sp4(F), for F a non-archimedean local field of residual characteristic different from two, and determine which are generic.
Let F be an arbitrary local field. Consider the standard embedding and the two-sided action of GLn(F)×GLn(F) on GLn+1(F). In this paper we show that any GLn(F)×GLn(F)-invariant distribution on GLn+1(F) is invariant with respect to transposition. We show that this implies that the pair (GLn+1(F), GLn(F)) is a Gelfand pair. Namely, for any irreducible admissible representation (π,E) of GLn+1(F), . For the proof in the archimedean case, we develop several tools to study invariant distributions on smooth manifolds.
A nine-dimensional exponential Lie group G and a linear form ℓ on the Lie algebra of G are presented such that for all Pukanszky polarizations 𝔭 at ℓ the canonically associated unitary representation ρ=ρ(ℓ,𝔭) of G has the property that ρ(ℒ1(G)) does not contain any nonzero operator given by a compactly supported kernel function. This example shows that one of Leptin’s results is wrong, and it cannot be repaired.
The eta invariant of the Dirac operator over a non-compact cofinite quotient of PSL(2,ℝ) is defined through a regularized trace following Melrose. It reduces to the standard definition in terms of eigenvalues in the case of a totally non-trivial spin structure. When the S1-fibers are rescaled, the metric becomes of non-exact fibered-cusp type near the ends. We completely describe the continuous spectrum of the Dirac operator with respect to the rescaled metric and its dependence on the spin structure, and show that the adiabatic limit of the eta invariant is essentially the volume of the base hyperbolic Riemann surface with cusps, extending some of the results of Seade and Steer.
Suppose that X is a smooth quasiprojective variety over ℂ and ρ:π1(X,x)→SL(2,ℂ) is a Zariski-dense representation with quasiunipotent monodromy at infinity. Then ρ factors through a map X→Y with Y either a Deligne–Mumford (DM) curve or a Shimura modular stack.
The description of irreducible representations of a group G can be seen as a problem in harmonic analysis; namely, decomposing a suitable space of functions on G into irreducibles for the action of G×G by left and right multiplication. For a split p-adic reductive group G over a local non-archimedean field, unramified irreducible smooth representations are in bijection with semisimple conjugacy classes in the ‘Langlands dual’ group. We generalize this description to an arbitrary spherical variety X of G as follows. Irreducible unramified quotients of the space are in natural ‘almost bijection’ with a number of copies of AX*/WX, the quotient of a complex torus by the ‘little Weyl group’ of X. This leads to a description of the Hecke module of unramified vectors (a weak analog of geometric results of Gaitsgory and Nadler), and an understanding of the phenomenon that representations ‘distinguished’ by certain subgroups are functorial lifts. In the course of the proof, rationality properties of spherical varieties are examined and a new interpretation is given for the action, defined by Knop, of the Weyl group on the set of Borel orbits.