Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T20:56:04.633Z Has data issue: false hasContentIssue false

On the equations for universal torsors over del Pezzo surfaces

Published online by Cambridge University Press:  11 August 2009

Vera V. Serganova
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA (serganov@math.berkeley.edu)
Alexei. N. Skorobogatov
Affiliation:
Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2BZ, UK (a.skorobogatov@imperial.ac.uk) and Institute for Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoi Karetnyi, Moscow 127994, Russia

Abstract

We describe equations of the universal torsors over del Pezzo surfaces of degrees from 2 to 5 over an algebraically closed field in terms of the equations of the corresponding homogeneous space G/P. We also give a generalization for fields that are not algebraically closed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Batyrev, V. V. and Popov, O. N., The Cox ring of a del Pezzo surface, in Arithmetic of Higher-Dimensional Algebraic Varieties, Palo Alto, 2002, Progress in Mathematics, Volume 226, pp. 85103 (Birkhäuser, 2004).CrossRefGoogle Scholar
2.Beauville, A., Colliot-Thélène, J.-L., Sansuc, J.-J. and Swinnerton-Dyer, P., Variétés stablement rationnelles non rationnelles, Annals Math. 121 (1985), 283318.CrossRefGoogle Scholar
3.Bourbaki, N., Groupes et algèbres de Lie, Chapters 4–8 (Masson, Paris, 1975/1981).Google Scholar
4.Colliot-Thélène, J.-L. and Sansuc, J.-J., La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375492.CrossRefGoogle Scholar
5.Colliot-Thélène, J.-L., Kanevsky, D. and Sansuc, J.-J., Arithmétique des surfaces cubiques diagonales, in Diophantine Approximation and Transcendence Theory, Bonn, 1985, Lecture Notes in Mathematics, Volume 1290, pp. 1108 (Springer, 1987).CrossRefGoogle Scholar
6.Colliot-Thélène, J.-L., Sansuc, J.-J. and Swinnerton-Dyer, P., Intersections of two quadrics and Châtelet surfaces, I, II, J. Reine Angew. Math. 374 (1987), 37168.Google Scholar
7.Derenthal, U., Universal torsors of del Pezzo surfaces and homogeneous spaces, Adv. Math. 213 (2007), 849864.CrossRefGoogle Scholar
8.Derenthal, U., On the Cox ring of del Pezzo surfaces, preprint arXiv:math.AG/0603111.Google Scholar
9.Gille, Ph., Type des tores maximaux des groupes semi-simples, J. Ramanujan Math. Soc. 19 (2004), 213230.Google Scholar
10.Kunyavskii, B. E. and Tsfasman, M. A., Zero-cycles on rational surfaces and Néron–Severi tori, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 631654.Google Scholar
11.Laface, A. and Velasco, M., Picard-graded Betti numbers and the defining ideals of Cox rings, preprint arXiv:0707.3251.Google Scholar
12. YuManin, I., Cubic forms, 2nd edn (North-Holland, Amsterdam, 1986).Google Scholar
13.Mumford, D., Fogarty, J. and Kirwan, F., Geometric invariant theory, 3rd enlarged edn (Springer, 1994).CrossRefGoogle Scholar
14.Popov, O. N., Del Pezzo surfaces and algebraic groups, Diplomarbeit, Universität Tübingen (2001).Google Scholar
15.Raghunathan, M. S., Tori in quasi-split groups, J. Ramanujan Math. Soc. 19 (2004), 281287.Google Scholar
16.Serganova, V. V. and Skorobogatov, A. N., Del Pezzo surfaces and representation theory, J. Alg. Number Theory 1 (2007), 393419.CrossRefGoogle Scholar
17.Serre, J.-P., Cohomologie galoisienne, Springer Lecture Notes in Mathematics, Volume 5 (Springer, 1964).Google Scholar
18.Skorobogatov, A., Torsors and rational points (Cambridge University Press, 2001).CrossRefGoogle Scholar
19.Skorobogatov, A., Automorphisms and forms of torus quotients of homogeneous spaces, Mat. Sbornik, to appear (available at www.ma.ic.ac.uk/~anskor/skor_msb.pdf; in Russian).Google Scholar
20.Stillman, M., Testa, D. and Velasco, M., Gröbner bases, monomial group actions, and the Cox ring of del Pezzo surfaces, J. Alg. 316 (2007), 777801.CrossRefGoogle Scholar
21.Sturmfels, B. and Xu, Z., Sagbi bases of Cox–Nagata rings, J. Eur. Math. Soc., in press.Google Scholar
22.Testa, D., Várilly-Alvarado, A. and Velasco, M., Cox rings of degree one del Pezzo surfaces, preprint arXiv:0803.0353.Google Scholar