To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend our previous work in collaboration with Ngô Bao Châu and give a fixed point formula for the elliptic part of moduli spaces of $G$-shtukas with arbitrary modifications. Our formula is similar to the fixed point formula of Kottwitz for certain Shimura varieties. Our method is inspired by that of Kottwitz and simpler than that of Lafforgue for the fixed point formula of the moduli space of Drinfeld $\text{GL} (r)$-shtukas.
This paper deals with the Schrödinger equation $i{\partial }_{s} u(\mathbf{z} , t; s)- \mathcal{L} u(\mathbf{z} , t; s)= 0, $ where $ \mathcal{L} $ is the sub-Laplacian on the Heisenberg group. Assume that the initial data $f$ satisfies $\vert f(\mathbf{z} , t)\vert \lesssim {q}_{\alpha } (\mathbf{z} , t), $ where ${q}_{s} $ is the heat kernel associated to $ \mathcal{L} . $ If in addition $\vert u(\mathbf{z} , t; {s}_{0} )\vert \lesssim {q}_{\beta } (\mathbf{z} , t), $ for some ${s}_{0} \in \mathbb{R} \setminus \{ 0\} , $ then we prove that $u(\mathbf{z} , t; s)= 0$ for all $s\in \mathbb{R} $ whenever $\alpha \beta \lt { s}_{0}^{2} . $ This result holds true in the more general context of $H$-type groups. We also prove an analogous result for the Grushin operator on ${ \mathbb{R} }^{n+ 1} . $
Let $G$ be a simple algebraic group. Labelled trivalent graphs called webs can be used to produce invariants in tensor products of minuscule representations. For each web, we construct a configuration space of points in the affine Grassmannian. Via the geometric Satake correspondence, we relate these configuration spaces to the invariant vectors coming from webs. In the case of $G= \mathrm{SL} (3)$, non-elliptic webs yield a basis for the invariant spaces. The non-elliptic condition, which is equivalent to the condition that the dual diskoid of the web is $\mathrm{CAT} (0)$, is explained by the fact that affine buildings are $\mathrm{CAT} (0)$.
The arithmetic fundamental lemma conjecture of the third author connects the derivative of an orbital integral on a symmetric space with an intersection number on a formal moduli space of $p$-divisible groups of Picard type. It arises in the relative trace formula approach to the arithmetic Gan–Gross–Prasad conjecture. We prove this conjecture in the minuscule case.
We study graded group-valued continuously differentiable mappings defined on stratified groups, where differentiability is understood with respect to the group structure. We characterize these mappings by a system of nonlinear first-order PDEs, establishing a quantitative estimate for their difference quotient. This provides us with a mean value estimate that allows us to prove both the inverse mapping theorem and the implicit function theorem. The latter theorem also relies on the fact that the differential admits a proper factorization of the domain into a suitable inner semidirect product. When this splitting property of the differential holds in the target group, then the inverse mapping theorem leads us to the rank theorem. Both implicit function theorem and rank theorem naturally introduce the classes of image sets and level sets. For commutative groups, these two classes of sets coincide and correspond to the usual submanifolds. In noncommutative groups, we have two distinct classes of intrinsic submanifolds. They constitute the so-called intrinsic graphs, that are defined with respect to the algebraic splitting and everywhere possess a unique metric tangent cone equipped with a natural group structure.
We construct dense Borel measurable subgroups of Lie groups of intermediate Hausdorff dimension. In particular, we generalize the Erdős–Volkmann construction [Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math.221 (1966), 203–208], showing that any nilpotent $\sigma $-compact Lie group $N$ admits dense Borel subgroups of arbitrary dimension between zero and $\dim N$. In algebraic groups defined over a finite extension of the rationals, using diophantine properties of algebraic numbers, we are also able to construct dense subgroups of arbitrary dimension, but the general case remains open. In particular, we raise the following question: does there exist a measurable proper subgroup of $ \mathbb{R} $ of positive Hausdorff dimension which is stable under multiplication by a transcendental number? Subgroups of nilpotent $p$-adic analytic groups are also discussed.
Let $G$ be a connected, reductive algebraic group over a number field $F$ and let $E$ be an algebraic representation of ${G}_{\infty } $. In this paper we describe the Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ of $G$ below a certain degree ${q}_{ \mathsf{res} } $ in terms of Franke’s filtration of the space of automorphic forms. This entails a description of the map ${H}^{q} ({\mathfrak{m}}_{G} , K, \Pi \otimes E)\rightarrow { H}_{\mathrm{Eis} }^{q} (G, E)$, $q\lt {q}_{ \mathsf{res} } $, for all automorphic representations $\Pi $ of $G( \mathbb{A} )$ appearing in the residual spectrum. Moreover, we show that below an easily computable degree ${q}_{ \mathsf{max} } $, the space of Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ is isomorphic to the cohomology of the space of square-integrable, residual automorphic forms. We discuss some more consequences of our result and apply it, in order to derive a result on the residual Eisenstein cohomology of inner forms of ${\mathrm{GL} }_{n} $ and the split classical groups of type ${B}_{n} $, ${C}_{n} $, ${D}_{n} $.
In this paper, we consider the $\mathrm{SL} (2)$ analogue of two well-known theorems about period integrals of automorphic forms on $\mathrm{GL} (2)$: one due to Harder–Langlands–Rapoport about non-vanishing of period integrals on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{F} )$ of cuspidal automorphic representations on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{E} )$ where $E$ is a quadratic extension of a number field $F$, and the other due to Waldspurger involving toric periods of automorphic forms on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{F} )$. In both these cases, now involving $\mathrm{SL} (2)$, we analyze period integrals on global$L$-packets; we prove that under certain conditions, a global automorphic $L$-packet which at each place of a number field has a distinguished representation, contains globally distinguished representations, and further, an automorphic representation which is locally distinguished is globally distinguished.
It has been conjectured that if $G= \mathop{({ \mathbb{Z} }_{p} )}\nolimits ^{r} $ acts freely on a finite $CW$-complex $X$ which is homotopy equivalent to a product of spheres ${S}^{{n}_{1} } \times {S}^{{n}_{2} } \times \cdots \times {S}^{{n}_{k} } $, then $r\leq k$. We address this question with the relaxation that $X$ is finite-dimensional, and show that, to answer the question, it suffices to consider the case where the dimensions of the spheres are greater than or equal to $2$.
We give an explicit construction of the cusp eigenforms on an elliptic curve defined over a finite field, using the theory of Hall algebras and the Langlands correspondence for function fields and ${\mathrm{GL} }_{n} $. As a consequence we obtain a description of the Hall algebra of an elliptic curve as an infinite tensor product of simpler algebras. We prove that all these algebras are specializations of a universal spherical Hall algebra (as defined and studied by Burban and Schiffmann [On the Hall algebra of an elliptic curve I, Preprint (2005), arXiv:math/0505148 [math.AG]] and Schiffmann and Vasserot [The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compositio Math. 147 (2011), 188–234]).
Let ${\rm F}$ be a non-Archimedean locally compact field of residue characteristic $p$, let ${\rm D}$ be a finite-dimensional central division ${\rm F}$-algebra and let ${\rm R}$ be an algebraically closed field of characteristic different from $p$. We define banal irreducible ${\rm R}$-representations of the group ${\rm G}={\rm GL}_{m}({\rm D})$. This notion involves a condition on the cuspidal support of the representation depending on the characteristic of ${\rm R}$. When this characteristic is banal with respect to ${\rm G}$, in particular when ${\rm R}$ is the field of complex numbers, any irreducible ${\rm R}$-representation of ${\rm G}$ is banal. In this article, we give a classification of all banal irreducible ${\rm R}$-representations of ${\rm G}$ in terms of certain multisegments, called banal. When ${\rm R}$ is the field of complex numbers, our method provides a new proof, entirely local, of Tadić’s classification of irreducible complex smooth representations of ${\rm G}$.
Using theta correspondence, we classify the irreducible representations of Mp2n in terms of the irreducible representations of SO2n+1 and determine many properties of this classification. This is a local Shimura correspondence which extends the well-known results of Waldspurger for n=1.
We give a generalisation of the Cartan decomposition for connected compact Lie groups of type B motivated by the work on visible actions of Kobayashi [‘A generalized Cartan decomposition for the double coset space $(U(n_{1})\times U(n_{2})\times U(n_{3})) \backslash U(n)/ (U(p)\times U(q))$’, J. Math. Soc. Japan59 (2007), 669–691] for type A groups. Suppose that $G$ is a connected compact Lie group of type B, $\sigma $ is a Chevalley–Weyl involution and $L$, $H$ are Levi subgroups. First, we prove that $G=LG^{\sigma }H$ holds if and only if either (I) both $H$ and $L$ are maximal and of type A, or (II) $(G,H)$ is symmetric and $L$ is the Levi subgroup of an arbitrary maximal parabolic subgroup up to switching $H$ and $L$. This classification gives a visible action of $L$ on the generalised flag variety $G/H$, as well as that of the $H$-action on $G/L$ and of the $G$-action on $(G\times G)/(L\times H)$. Second, we find an explicit ‘slice’ $B$ with $\dim B=\mathrm {rank}\, G$ in case I, and $\dim B=2$ or $3$ in case II, such that a generalised Cartan decomposition $G=LBH$holds. An application to multiplicity-free theorems of representations is also discussed.
In our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899–948], we established a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with local coefficients for local symmetric spaces $X$ attached to real orthogonal groups of type $(p, q)$. This correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in $X$ with coefficients.
In this paper, we study the boundary behaviour of these theta functions in the non-compact case and show that the theta functions extend to the Borel–Sere compactification $ \overline{X} $ of $X$. However, for the $ \mathbb{Q} $-split case for signature $(p, p)$, we have to construct and consider a slightly larger compactification, the ‘big’ Borel–Serre compactification. The restriction to each face of $ \overline{X} $ is again a theta series as in [J. Funke and J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.
As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles when passing to an appropriate finite cover of $X$. In particular, the (co)homology groups in question do not vanish. We deduce as a consequence a sharp non-vanishing theorem for ${L}^{2} $-cohomology.
We construct a two-parameter family of actions ωk,a of the Lie algebra 𝔰𝔩(2,ℝ) by differential–difference operators on ℝN∖{0}. Here k is a multiplicity function for the Dunkl operators, and a>0 arises from the interpolation of the two 𝔰𝔩(2,ℝ) actions on the Weil representation of Mp(N,ℝ) and the minimal unitary representation of O(N+1,2). We prove that this action ωk,a lifts to a unitary representation of the universal covering of SL (2,ℝ) , and can even be extended to a holomorphic semigroup Ωk,a. In the k≡0case, our semigroup generalizes the Hermite semigroup studied by R. Howe (a=2)and the Laguerre semigroup studied by the second author with G. Mano (a=1) . One boundary value of our semigroup Ωk,a provides us with (k,a) -generalized Fourier transforms ℱk,a, which include the Dunkl transform 𝒟k (a=2)and a new unitary operator ℋk (a=1) , namely a Dunkl–Hankel transform. We establish the inversion formula, a generalization of the Plancherel theorem, the Hecke identity, the Bochner identity, and a Heisenberg uncertainty relation for ℱk,a. We also find kernel functions for Ωk,a and ℱk,a for a=1,2in terms of Bessel functions and the Dunkl intertwining operator.
We establish a character multiplicity duality for a certain natural class of nonlinear (nonalgebraic) groups arising as two-fold covers of simply laced real reductive algebraic groups. This allows us to extend part of the formalism of the local Langlands conjecture to such groups.
The normal residual finiteness growth of a group quantifies how well approximated the group is by its finite quotients. We show that any S-arithmetic subgroup of a higher rank Chevalley group G has normal residual finiteness growth ndim (G).
Let G be a p-adic reductive group and let U0 be the unipotent radical of a minimal parabolic subgroup of G. We introduce a Fourier transform defined on the space of smooth Whittaker functions on G which are compactly supported modulo U0. We determine its image. The proof follows the proof of Heiermann for the functions on the group.
During the proof, we establish an inversion formula. This formula allows us to prove that an irreducible smooth representation of G, which has a Whittaker model in the space of smooth Whittaker functions on G which are compactly supported modulo U0, is cuspidal.
This work gave us the opportunity to prepare a framework for the study of harmonic analysis on p-adic reductive symmetric spaces: B-matrices and constant term; a study of wave packets.
This paper studies two new kinds of affine Springer fibres that are adapted to the root valuation strata of Goresky–Kottwitz–MacPherson. In addition it develops various linear versions of Katz's Hodge–Newton decomposition.
For V a two-dimensional p-adic representation of Gℚp, we denote by B(V ) the admissible unitary representation of GL2(ℚp) attached to V under the p-adic local Langlands correspondence of GL2(ℚp) initiated by Breuil. In this paper, building on the works of Berger–Breuil and Colmez, we determine the locally analytic vectors B(V )an of B (V )when V is irreducible, crystabelian and Frobenius semisimple with distinct Hodge–Tate weights; this proves a conjecture of Breuil. Using this result, we verify Emerton’s conjecture that dim Ref η⊗ψ (V )=dim Exp η∣⋅∣⊗xψ (B (V )an ⊗(x∣⋅∣∘det ))for those V which are irreducible, crystabelian and Frobenius semisimple.