We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using toroidal co-ordinates, an exact solution is derived for the velocity field induced in two immiscible semi-infinite viscous fluids, possessing a plane interface, by the slow rotation of a concave spherical lens, which is such that the circle of intersection of the composite spherical surfaces lies in the plane of the interface. The expression for the torque acting on the lens is derived, and this is shown to be reducible to an analytic closed form, when the lens degenerates into a spherical bowl and the fluids are identical.
Using toroidal coordinates, an exact solution is derived for the velocity field induced in two immiscible semi-infinite fluids possessing a plane interface, by the slow rotation of an axially symmetric body partly immersed in each fluid. The surface of the body is assumed to be formed from two intersecting spheres, or a sphere and a circular disc, with the circle of intersection of the composite surfaces lying in th interface.
It is shown that when the rotating body possesses reflection symmetry about the plane of the interface of the fluids, the velocity field in either fluid is independent of the viscosities of the fluids. The torque exerted on the body is then proportional to the sum of the viscosities. Analytic closed-form expressions are derived for the torque when the body is either a sphere, a circular disc, or a tangent-sphere dumbbell, and for a hemisphere rotating in an infinite homogeneous fluid. Closed-form results are also given for an immersed sphere, tangent to a free surface. For other geometrical configurations, numerical values of the torque are provided for a variety of body shapes and two-fluid systems of various viscosity ratios.
We shall be concerned with two boundary value problems for the Falkner-Skan Equation
when –β is a small positive number. Our interest is in solutions of (1) which exhibit “reversed flow”; that is, solutions f such that f′(x) < 0 for small positive values of x. The boundary conditions which we wish to consider are
The study of similarity solutions of Prandtl's equations for the steady two dimensional flow of an incompressible fluid past a rigid wall leads to the equation
where the primes denote differentiation with respect to the independent variable t, and λ is a parameter. It was first obtained in 1930 by Falkner and Skan [3]. For its derivation we refer to Schlichting [6] here we merely note that the function f′(t) represents, after suitable normalization, the velocity parallel to the wall.
The properties of the solution of the differential equation governing the evolution of localised line-centred disturbances to a marginally unstable plane parallel flow were described by Hocking and Stewartson (1972). A corresponding study of the properties when the initial disturbance is point-centred is presented here. A localised burst at a finite time can be produced, for certain values of the coefficients which can be determined analytically. When the equation permits solutions with circular symmetry, two kinds of bursting solutions, as well as solutions which remain finite, are possible, but the boundary between bursting and finite solutions could not be determined analytically.