We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The beginning of the transition from the laminar to a turbulent flow is usually the generation of instability Tollmien-Schlichting (T-S) waves in the boundary layer. Previously, most numerical and experimental researches focused on generating instability T-S waves through the external disturbances such as acoustic waves and vortical disturbances interacting with wall roughness or at the leading-edge of flatplate, whereas only a few paid attention to the excitation of the T-S waves directly by free-stream turbulence (FST). In this study, the generating mechanism of the temporal mode T-S waves under free-stream turbulence is investigated by using direct numerical simulation (DNS) and fast Fourier transform. Wave packets superposed by a group of stability, neutral and instability T-S waves are discovered in the boundary layer. In addition, the relation between the amplitude of the imposed free-stream turbulence and the amplitude of the excited T-S wave is also obtained.
In this paper, we propose a Static Condensation Reduced Basis Element (SCRBE) approach for the Reynolds Lubrication Equation (RLE). The SCRBE method is a computational tool that allows to efficiently analyze parametrized structures which can be decomposed into a large number of similar components. Here, we extend the methodology to allow for a more general domain decomposition, a typical example being a checkerboard-pattern assembled from similar components. To this end, we extend the formulation and associated a posteriori error bound procedure. Our motivation comes from the analysis of the pressure distribution in plain journal bearings governed by the RLE. However, the SCRBE approach presented is not limited to bearings and the RLE, but directly extends to other component-based systems. We show numerical results for plain bearings to demonstrate the validity of the proposed approach.
The purpose of this paper is to provide a large class of initial data which generates global smooth solution of the 3D inhomogeneous incompressible Navier–Stokes system in the whole space $\mathbb{R}^{3}$. This class of data is based on functions which vary slowly in one direction. The idea is that 2D inhomogeneous Navier–Stokes system with large data is globally well-posed and we construct the 3D approximate solutions by the 2D solutions with a parameter. One of the key point of this study is the investigation of the time decay properties of the solutions to the 2D inhomogeneous Navier–Stokes system. We obtained the same optimal decay estimates as the solutions of 2D homogeneous Navier–Stokes system.
This paper presents the extension of a well-established Immersed Boundary (IB)/cut-cell method, the LS-STAG method (Y. Cheny & O. Botella, J. Comput. Phys. Vol. 229, 1043-1076, 2010), to viscoelastic flow computations in complex geometries. We recall that for Newtonian flows, the LS-STAG method is based on the finite-volume method on staggered grids, where the IB boundary is represented by its level-set function. The discretization in the cut-cells is achieved by requiring that global conservation properties equations be satisfied at the discrete level, resulting in a stable and accurate method and, thanks to the level-set representation of the IB boundary, at low computational costs.
In the present work, we consider a general viscoelastic tensorial equation whose particular cases recover well-known constitutive laws such as the Oldroyd-B, White-Metzner and Giesekus models. Based on the LS-STAG discretization of the Newtonian stresses in the cut-cells, we have achieved a compatible velocity-pressure-stress discretization that prevents spurious oscillations of the stress tensor. Applications to popular benchmarks for viscoelastic fluids are presented: the four-to-one abrupt planar contraction flows with sharp and rounded re-entrant corners, for which experimental and numerical results are available. The results show that the LS-STAG method demonstrates an accuracy and robustness comparable to body-fitted methods.
Removing geometric details from the computational domain can significantly reduce the complexity of downstream task of meshing and simulation computation, and increase their stability. Proper estimation of the sensitivity analysis error induced by removing such domain details, called defeaturing errors, can ensure that the sensitivity analysis fidelity can still be met after simplification. In this paper, estimation of impacts of removing arbitrarily constrained domain details to the analysis of incompressible fluid flows is studied with applications to fast analysis of incompressible fluid flows in complex environments. The derived error estimator is applicable to geometric details constrained by either Dirichlet or Neumann boundary conditions, and has no special requirements on the outer boundary conditions. Extensive numerical examples were presented to demonstrate the effectiveness and efficiency of the proposed error estimator.
A genuine finite volume method based on the lattice Boltzmann equation (LBE) for nearly incompressible flows is developed. The proposed finite volume lattice Boltzmann method (FV-LBM) is grid-transparent, i.e., it requires no knowledge of cell topology, thus it can be implemented on arbitrary unstructured meshes for effective and efficient treatment of complex geometries. Due to the linear advection term in the LBE, it is easy to construct multi-dimensional schemes. In addition, inviscid and viscous fluxes are computed in one step in the LBE, as opposed to in two separate steps for the traditional finite-volume discretization of the Navier-Stokes equations. Because of its conservation constraints, the collision term of the kinetic equation can be treated implicitly without linearization or any other approximation, thus the computational efficiency is enhanced. The collision with multiple-relaxation-time (MRT) model is used in the LBE. The developed FV-LBM is of second-order convergence. The proposed FV-LBM is validated with three test cases in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the Blasius boundary layer; and (c) the steady flow past a cylinder at the Reynolds numbers Re=10, 20, and 40. The results verify the designed accuracy and efficacy of the proposed FV-LBM.
Computational fluid dynamics (CFD) has been used by numerous researchers for the simulation of flows around wind turbines. Since the 2000s, the experiments of NREL phase VI blades for blind comparison have been a de-facto standard for numerical software on the prediction of full scale horizontal axis wind turbines (HAWT) performance. However, the characteristics of vortex structures in the wake, whether for modeling the wake or for understanding the aerodynamic mechanisms inside, are still not thoroughly investigated. In the present study, the flow around N-REL phase VI blades was numerically simulated, and the results of the wake field were compared with the experimental ones of a one-to-eight scaled model in a low-speed wind tunnel. A good agreement between simulation and experimental results was achieved for the evaluation of overall performances. The simulation captured the complete formation procedure of tip vortex structure from the blade. Quantitative analysis showed the streamwise translation movement of vortex cores. Both the initial formation and the damping of vorticity in near wake field were predicted. These numerical results showed good agreements with the measurements. Moreover, wind tunnel wall effects were also investigated on these vortex structures, and it revealed further radial expansion of the helical vortical structures in comparison with the free-stream case.
In the first part, we study the convergence of discrete solutions to splitting schemes for two-phase flow with different mass densities suggested in [Guillen-Gonzalez, Tierra, J.Comput.Math. (6)2014]. They have been formulated for the diffuse interface model in [Abels, Garcke, Grün, M3AS, 2012, DOI:10.1142/S0218202511500138] which is consistent with thermodynamics. Our technique covers various discretization methods for phase-field energies, ranging from convex-concave splitting to difference quotient approaches for the double-well potential. In the second part of the paper, numerical experiments are presented in two space dimensions to identify discretizations of Cahn-Hilliard energies which are ϕ-stable and which do not reduce the acceleration of falling droplets. Finally, 3d simulations in axial symmetric geometries are shown to underline even more the full practicality of the approach.
Arterial diseases such as aneurysm and stenosis may result from the mechanical and/or morphological change of an arterial wall structure and correspondingly altered hemodynamics. The development of a 3D computational model of blood flow can be useful to study the hemodynamics in major blood vessels and may provide an insight into the noninvasive technique to detect arterial diseases in early stage. In this paper, we present a three-dimensional model of blood flow in the aorta, which is based on the immersed boundary method to describe the interaction of blood flow with the aortic wall. Our simulation results show that the hysteresis loop is evident in the pressure-diameter relationship of the normal aorta when the arterial wall is considered to be viscoelastic. In addition, it is shown that flow patterns and pressure distributions are altered in response to the change of aortic morphology.
The unified lattice Boltzmann model is extended to the quadtree grids for simulation of fluid flow through porous media. The unified lattice Boltzmann model is capable of simulating flow in porous media at various scales or in systems where multiple length scales coexist. The quadtree grid is able to provide a high-resolution approximation to complex geometries, with great flexibility to control local grid density. The combination of the unified lattice Boltzmann model and the quadtree grids results in an efficient numerical model for calculating permeability of multi-scale porous media. The model is used for permeability calculation for three systems, including a fractured system used in a previous study, a Voronoi tessellation system, and a computationally-generated pore structure of fractured shale. The results are compared with those obtained using the conventional lattice Boltzmann model or the unified lattice Boltzmann model on rectangular or uniform square grid. It is shown that the proposed model is an accurate and efficient tool for flow simulation in multi-scale porous media. In addition, for the fractured shale, the contribution of flow in matrix and fractures to the overall permeability of the fractured shale is studied systematically.
We show that in an infinite straight pipe of arbitrary (sufficiently smooth) cross-section, a generalized non-Newtonian liquid admits one and only one fully developed time-periodic flow (Womersley flow) when either the flow rate (problem 1) or the axial pressure gradient (problem 2) is prescribed in analogous time-periodic fashion. In addition, we show that the relevant solution depends continuously upon the data in appropriate norms. As is well known from the Newtonian counterpart of the problem, the latter is pivotal for the analysis of flow in a general unbounded pipe system with cylindrical outlets (Leray's problem). It is also worth remarking that problem 1 possesses an intrinsic interest from both mathematical and physical viewpoints, in that it constitutes a (nonlinear) inverse problem with a significant bearing on several applications, including blood flow modelling in large arteries.
We apply the immersed boundary (or IB) method to simulate deformation and detachment of a periodic array of wall-bounded biofilm colonies in response to a linear shear flow. The biofilm material is represented as a network of Hookean springs that are placed along the edges of a triangulation of the biofilm region. The interfacial shear stress, lift and drag forces acting on the biofilm colony are computed by using fluid stress jump method developed by Williams, Fauci and Gaver [Disc. Con-tin. Dyn. Sys. B 11(2):519–540, 2009], with a modified version of their exclusion filter. Our detachment criterion is based on the novel concept of an averaged equivalent continuum stress tensor defined at each IB point in the biofilm which is then used to determine a corresponding von Mises yield stress; wherever this yield stress exceeds a given critical threshold the connections to that node are severed, thereby signalling the onset of a detachment event. In order to capture the deformation and detachment behaviour of a biofilm colony at different stages of growth, we consider a family of four biofilm shapes with varying aspect ratio. For each aspect ratio, we varied the spacing between colonies to investigate role of spatial clustering in offering protection against detachment. Our numerical simulations focus on the behaviour of weak biofilms (with relatively low yield stress threshold) and investigate features of the fluid-structure interaction such as locations of maximum shear and increased drag. The most important conclusions of this work are: (a) reducing the spacing between colonies reduces drag by from 50 to 100% and alters the interfacial shear stress profile, suggesting that even weak biofilms may be able to grow into tall structures because of the protection they gain from spatial proximity with other colonies; (b) the commonly employed detachment strategy in biofilm models based only on interfacial shear stress can lead to incorrect or inaccurate results when applied to the study of shear induced detachment of weak biofilms. Our detachment strategy based on equivalent continuum stresses provides a unified and consistent IB framework that handles both sloughing and erosion modes of biofilm detachment, and is consistent with strategies employed in many other continuum based biofilm models.
A high-order finite difference scheme has been developed to approximate the spatial derivative terms present in the unsteady Poisson-Nernst-Planck (PNP) equations and incompressible Navier-Stokes (NS) equations. Near the wall the sharp solution profiles are resolved by using the combined compact difference (CCD) scheme developed in five-point stencil. This CCD scheme has a sixth-order accuracy for the second-order derivative terms while a seventh-order accuracy for the first-order derivative terms. PNP-NS equations have been also transformed to the curvilinear coordinate system to study the effects of channel shapes on the development of electroos-motic flow. In this study, the developed scheme has been analyzed rigorously through the modified equation analysis. In addition, the developed method has been computationally verified through four problems which are amenable to their own exact solutions. The electroosmotic flow details in planar and wavy channels have been explored with the emphasis on the formation of Coulomb force. Significance of different forces resulting from the pressure gradient, diffusion and Coulomb origins on the convective electroosmotic flow motion is also investigated in detail.
We discuss a control problem involving a stochastic Burgers equation with a random diffusion coefficient. Numerical schemes are developed, involving the finite element method for the spatial discretisation and the sparse grid stochastic collocation method in the random parameter space. We also use these schemes to compute closed-loop suboptimal state feedback control. Several numerical experiments are performed, to demonstrate the efficiency and plausibility of our approximation methods for the stochastic Burgers equation and the related control problem.
Two-grid finite element methods for the steady Navier-Stokes/Darcy model are considered. Stability and optimal error estimates in the H1-norm for velocity and piezometric approximations and the L2-norm for pressure are established under mesh sizes satisfying h = H2. A modified decoupled and linearised two-grid algorithm is developed, together with some associated optimal error estimates. Our method and results extend and improve an earlier investigation, and some numerical computations illustrate the efficiency and effectiveness of the new algorithm.
The control of convective heat transfer from a heated circular cylinder immersed in an electrically conducting fluid is achieved using an externally imposed magnetic field. A Higher Order Compact Scheme (HOCS) is used to solve the governing energy equation in cylindrical polar coordinates. The HOCS gives fourth order accurate results for the temperature field. The behavior of local Nusselt number, mean Nusselt number and temperature field due to variation in the aligned magnetic field is evaluated for the parameters 5≤Re≤40, 0≤N≤20 and 0.065≤Pr≤7. It is found that the convective heat transfer is suppressed by increasing the strength of the imposed magnetic field until a critical value of N, the interaction parameter, beyond which the heat transfer increases with further increase in N. The results are found to be in good agreement with recent experimental studies.
This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.
A finite volume simulation of unsteady vortical wake flow behind a square-back estate car is presented. The three-dimensional time-averaged incompressible Navier-Stokes equations are solved together with the Reynolds stress transport equations for turbulence. By virtue of the simulated surface streamlines, the physics of fluid can be extracted using the topological theory. In addition, the simulated topological singular points and lines of separation are plotted on the car surface. The vortical flow motions that developed behind the mirrors, wheels and car body are explored by means of the simulated time evolving vortex corelines. The formation and interaction of the vortex systems in the wake are examined by tracing the instantaneous streamlines in the vicinity of the simulated vortex corelines. The vortex street behind the estate car is also illustrated by the simulated streaklines. Finally the Hopf bifurcation phenomenon is revealed by the time-varying aerodynamic forces on the car.
A direct-forcing immersed boundary method (DFIB) with both virtual force and heat source is developed here to solve Navier-Stokes and the associated energy transport equations to study some thermal flow problems caused by a moving rigid solid object within. The key point of this novel numerical method is that the solid object, stationary or moving, is first treated as fluid governed by Navier-Stokes equations for velocity and pressure, and by energy transport equation for temperature in every time step. An additional virtual force term is then introduced on the right hand side of momentum equations in the solid object region to make it act exactly as if it were a solid rigid body immersed in the fluid. Likewise, an additional virtual heat source term is applied to the right hand side of energy equation at the solid object region to maintain the solid object at the prescribed temperature all the time. The current method was validated by some benchmark forced and natural convection problems such as a uniform flow past a heated circular cylinder, and a heated circular cylinder inside a square enclosure. We further demonstrated this method by studying a mixed convection problem involving a heated circular cylinder moving inside a square enclosure. Our current method avoids the otherwise requested dynamic grid generation in traditional method and shows great efficiency in the computation of thermal and flow fields caused by fluid-structure interaction.