To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the rigid monoidal category of character sheaves on a smooth commutative group scheme $G$ over a finite field $k$, and expand the scope of the function-sheaf dictionary from connected commutative algebraic groups to this setting. We find the group of isomorphism classes of character sheaves on $G$, and show that it is an extension of the group of characters of $G(k)$ by a cohomology group determined by the component group scheme of $G$. We also classify all morphisms in the category character sheaves on $G$. As an application, we study character sheaves on Greenberg transforms of locally finite type Néron models of algebraic tori over local fields. This provides a geometrization of quasicharacters of $p$-adic tori.
The second author has recently introduced a new class of $L$-series in the arithmetic theory of function fields over finite fields. We show that the values at one of these $L$-series encode arithmetic information of a generalization of Drinfeld modules defined over Tate algebras that we introduce (the coefficients can be chosen in a Tate algebra). This enables us to generalize Anderson’s log-algebraicity theorem and an analogue of the Herbrand–Ribet theorem recently obtained by Taelman.
Let $G$ be a split reductive group. We introduce the moduli problem of bundle chains parametrizing framed principal $G$-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack provides an equivariant toroidal compactification of $G$. All toric orbifolds may be thus obtained. Moreover, we get a canonical compactification of any semisimple $G$, which agrees with the wonderful compactification in the adjoint case, but which in other cases is an orbifold. Finally, we describe the connections with Losev–Manin’s spaces of weighted pointed curves and with Kausz’s compactification of $GL_{n}$.
We investigate Cox rings of minimal resolutions of surface quotient singularities and provide two descriptions of these rings. The first one is the equation for the spectrum of a Cox ring, which is a hypersurface in an affine space. The second is the set of generators of the Cox ring viewed as a subring of the coordinate ring of a product of a torus and another surface quotient singularity. In addition, we obtain an explicit description of the minimal resolution as a divisor in a toric variety.
Let $G$ be an algebraic real reductive group and $Z$ a real spherical $G$-variety, that is, it admits an open orbit for a minimal parabolic subgroup $P$. We prove a local structure theorem for $Z$. In the simplest case where $Z$ is homogeneous, the theorem provides an isomorphism of the open $P$-orbit with a bundle $Q\times _{L}S$. Here $Q$ is a parabolic subgroup with Levi decomposition $L\ltimes U$, and $S$ is a homogeneous space for a quotient $D=L/L_{n}$ of $L$, where $L_{n}\subseteq L$ is normal, such that $D$ is compact modulo center.
This paper deals with the geometric local theta correspondence at the Iwahori level for dual reductive pairs of type II over a non-Archimedean field $F$ of characteristic $p\neq 2$ in the framework of the geometric Langlands program. First we construct and study the geometric version of the invariants of the Weil representation of the Iwahori-Hecke algebras. In the particular case of $(\mathbf{GL}_{1},\mathbf{GL}_{m})$ we give a complete geometric description of the corresponding category. The second part of the paper deals with geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive connected groups $G$ and $H$ over $F$, and a morphism ${\check{G}}\times \text{SL}_{2}\rightarrow \check{H}$ of Langlands dual groups, we construct a bimodule over the affine extended Hecke algebras of $H$ and $G$ that should realize the geometric local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of this bimodule, and we prove our conjecture for pairs $(\mathbf{GL}_{1},\mathbf{GL}_{m})$.
Let $G$ be a simple algebraic group. A closed subgroup $H$ of $G$ is said to be spherical if it has a dense orbit on the flag variety $G/B$ of $G$. Reductive spherical subgroups of simple Lie groups were classified by Krämer in 1979. In 1997, Brundan showed that each example from Krämer’s list also gives rise to a spherical subgroup in the corresponding simple algebraic group in any positive characteristic. Nevertheless, up to now there has been no classification of all such instances in positive characteristic. The goal of this paper is to complete this classification. It turns out that there is only one additional instance (up to isogeny) in characteristic 2 which has no counterpart in Krämer’s classification. As one of our key tools, we prove a general deformation result for subgroup schemes that allows us to deduce the sphericality of subgroups in positive characteristic from the same property for subgroups in characteristic zero.
We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field $\mathbb{Q}$ of rational numbers. These curves are the nearby fibers of the semi-universal deformation of a simple singularity of type $E_{6}$. We show that average size of the 2-Selmer sets of these curves is finite (if it exists). We use this to show that a positive proposition of these curves (when ordered by height) has integral points everywhere locally, but no integral points globally.
We consider the distribution of $p$-power group schemes among the torsion of abelian varieties over finite fields of characteristic $p$, as follows. Fix natural numbers $g$ and $n$, and let ${\it\xi}$ be a non-supersingular principally quasipolarized Barsotti–Tate group of level $n$. We classify the $\mathbb{F}_{q}$-rational forms ${\it\xi}^{{\it\alpha}}$ of ${\it\xi}$. Among all principally polarized abelian varieties $X/\mathbb{F}_{q}$ of dimension $g$ with $X[p^{n}]_{\bar{\mathbb{F}}_{q}}\cong {\it\xi}_{\bar{\mathbb{F}}_{q}}$, we compute the frequency with which $X[p^{n}]\cong {\it\xi}^{{\it\alpha}}$. The error in our estimate is bounded by $D/\sqrt{q}$, where $D$ depends on $g$, $n$, and $p$, but not on ${\it\xi}$.
The celebrated Smith–Minkowski–Siegel mass formula expresses the mass of a quadratic lattice $(L,Q)$ as a product of local factors, called the local densities of $(L,Q)$. This mass formula is an essential tool for the classification of integral quadratic lattices. In this paper, we will describe the local density formula explicitly by observing the existence of a smooth affine group scheme $\underline{G}$ over $\mathbb{Z}_{2}$ with generic fiber $\text{Aut}_{\mathbb{Q}_{2}}(L,Q)$, which satisfies $\underline{G}(\mathbb{Z}_{2})=\text{Aut}_{\mathbb{Z}_{2}}(L,Q)$. Our method works for any unramified finite extension of $\mathbb{Q}_{2}$. Therefore, we give a long awaited proof for the local density formula of Conway and Sloane and discover its generalization to unramified finite extensions of $\mathbb{Q}_{2}$. As an example, we give the mass formula for the integral quadratic form $Q_{n}(x_{1},\dots ,x_{n})=x_{1}^{2}+\cdots +x_{n}^{2}$ associated to a number field $k$ which is totally real and such that the ideal $(2)$ is unramified over $k$.
Let $k$ be an infinite field. Let $R$ be the semi-local ring of a finite family of closed points on a $k$-smooth affine irreducible variety, let $K$ be the fraction field of $R$, and let $G$ be a reductive simple simply connected $R$-group scheme isotropic over $R$. Our Theorem 1.1 states that for any Noetherian $k$-algebra $A$ the kernel of the map
induced by the inclusion of $R$ into $K$ is trivial. Theorem 1.2 for $A=k$ and some other results of the present paper are used significantly in Fedorov and Panin [A proof of Grothendieck–Serre conjecture on principal bundles over a semilocal regular ring containing an infinite field, Preprint (2013), arXiv:1211.2678v2] to prove the Grothendieck–Serre’s conjecture for regular semi-local rings $R$ containing an infinite field.
We classify generically transitive actions of semi-direct products on ℙ2. Motivated by the program to study the distribution of rational points on del Pezzo surfaces (Manin's conjecture), we determine all (possibly singular) del Pezzo surfaces that are equivariant compactifications of homogeneous spaces for semi-direct products .
We show the existence of a large family of representations supported by the orbit closure of the determinant. However, the validity of our result is based on the validity of the celebrated ‘Latin square conjecture’ due to Alon and Tarsi or, more precisely, on the validity of an equivalent ‘column Latin square conjecture’ due to Huang and Rota.
We study a Hermitian form $h$ over a quaternion division algebra $Q$ over a field ($h$ is supposed to be alternating if the characteristic of the field is two). For generic $h$ and $Q$, for any integer $i\in [1,\;n/2]$, where $n:=\dim _{Q}h$, we show that the variety of $i$-dimensional (over $Q$) totally isotropic right subspaces of $h$ is $2$-incompressible. The proof is based on a computation of the Chow ring for the classifying space of a certain parabolic subgroup in a split simple adjoint affine algebraic group of type $C_{n}$. As an application, we determine the smallest value of the $J$-invariant of a non-degenerate quadratic form divisible by a $2$-fold Pfister form; we also determine the biggest values of the canonical dimensions of the orthogonal Grassmannians associated to such quadratic forms.
We classify all (abstract) homomorphisms from the group $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\sf PGL}_{r+1}(\mathbf{C})$ to the group ${\sf Bir}(M)$ of birational transformations of a complex projective variety $M$, provided that $r\geq \dim _\mathbf{C}(M)$. As a byproduct, we show that: (i) ${\sf Bir}(\mathbb{P}^n_\mathbf{C})$ is isomorphic, as an abstract group, to ${\sf Bir}(\mathbb{P}^m_\mathbf{C})$ if and only if $n=m$; and (ii) $M$ is rational if and only if ${\sf PGL}_{\dim (M)+1}(\mathbf{C})$ embeds as a subgroup of ${\sf Bir}(M)$.
We give a new, geometric proof of the section conjecture for fixed points of finite group actions on projective curves of positive genus defined over the field of complex numbers, as well as its natural nilpotent analogue. As a part of our investigations we give an explicit description of the abelianised section map for groups of prime order in this setting. We also show a version of the $2$-nilpotent section conjecture.
We introduce an analogue in hyperkähler geometry of the symplectic implosion, in the case of $\mathrm{SU} (n)$ actions. Our space is a stratified hyperkähler space which can be defined in terms of quiver diagrams. It also has a description as a non-reductive geometric invariant theory quotient.
For an arbitrary connected reductive group $G$, we consider the motivic integral over the arc space of an arbitrary $ \mathbb{Q} $-Gorenstein horospherical $G$-variety ${X}_{\Sigma } $ associated with a colored fan $\Sigma $ and prove a formula for the stringy $E$-function of ${X}_{\Sigma } $ which generalizes the one for toric varieties. We remark that, in contrast to toric varieties, the stringy $E$-function of a Gorenstein horospherical variety ${X}_{\Sigma } $ may be not a polynomial if some cones in $\Sigma $ have nonempty sets of colors. Using the stringy $E$-function, we can formulate and prove a new smoothness criterion for locally factorial horospherical varieties. We expect that this smoothness criterion holds for arbitrary spherical varieties.
We prove that the quotient by ${\mathrm{SL} }_{2} \times {\mathrm{SL} }_{2} $ of the space of bidegree $(a, b)$ curves on ${ \mathbb{P} }^{1} \times { \mathbb{P} }^{1} $ is rational when $ab$ is even and $a\not = b$.
We study the affine formal algebra $R$ of the Lubin–Tate deformation space as a module over two different rings. One is the completed group ring of the automorphism group $\Gamma $ of the formal module of the deformation problem, the other one is the spherical Hecke algebra of a general linear group. In the most basic case of height two and ground field $\mathbb {Q}_p$, our structure results include a flatness assertion for $R$ over the spherical Hecke algebra and allow us to compute the continuous (co)homology of $\Gamma $ with coefficients in $R$.