To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Varieties of the form $G\times S_{\!\text{reg}}$, where $G$ is a complex semisimple group and $S_{\!\text{reg}}$ is a regular Slodowy slice in the Lie algebra of $G$, arise naturally in hyperkähler geometry, theoretical physics and the theory of abstract integrable systems. Crooks and Rayan [‘Abstract integrable systems on hyperkähler manifolds arising from Slodowy slices’, Math. Res. Let., to appear] use a Hamiltonian $G$-action to endow $G\times S_{\!\text{reg}}$ with a canonical abstract integrable system. To understand examples of abstract integrable systems arising from Hamiltonian $G$-actions, we consider a holomorphic symplectic variety $X$ carrying an abstract integrable system induced by a Hamiltonian $G$-action. Under certain hypotheses, we show that there must exist a $G$-equivariant variety isomorphism $X\cong G\times S_{\!\text{reg}}$.
The Galois representation associated to a $p$-divisible group over a normal complete noetherian local ring with perfect residue field is described in terms of its Dieudonné display. As a consequence, the Kisin module associated to a commutative finite flat $p$-group scheme via Dieudonné displays is related to its Galois representation in the expected way.
A recent result by the authors gives an explicit construction for a universal deformation of a formal group $\unicode[STIX]{x1D6F7}$ of finite height over a finite field $k$. This provides in particular a parametrization of the set of deformations of $\unicode[STIX]{x1D6F7}$ over the ring ${\mathcal{O}}$ of Witt vectors over $k$. Another parametrization of the same set can be obtained through the Dieudonné theory. We find an explicit relation between these parameterizations. As a consequence, we obtain an explicit expression for the action of $\text{Aut}_{k}(\unicode[STIX]{x1D6F7})$ on the set of ${\mathcal{O}}$-deformations of $\unicode[STIX]{x1D6F7}$ in the coordinate system defined by the universal deformation. This generalizes a formula of Gross and Hopkins and the authors’ result for one-dimensional formal groups.
This paper is a complement to the work of the second author on modular quotient singularities in odd characteristic. Here, we prove that if V is a three-dimensional vector space over a field of characteristic 2 and G < GL(V) is a finite subgroup generated by pseudoreflections and possessing a two-dimensional invariant subspace W such that the restriction of G to W is isomorphic to the group SL2(𝔽2n), then the quotient V/G is non-singular. This, together with earlier known results on modular quotient singularities, implies first that a theorem of Kemper and Malle on irreducible groups generated by pseudoreflections generalizes to reducible groups in dimension three, and, second, that the classification of three-dimensional isolated singularities that are quotients of a vector space by a linear finite group reduces to Vincent's classification of non-modular isolated quotient singularities.
Let $G$ be a reductive group over an algebraically closed subfield $k$ of $\mathbb{C}$ of characteristic zero, $H\subseteq G$ an observable subgroup normalised by a maximal torus of $G$ and $X$ an affine $k$-variety acted on by $G$. Popov and Pommerening conjectured in the late 1970s that the invariant algebra $k[X]^{H}$ is finitely generated. We prove the conjecture for: (1) subgroups of $\operatorname{SL}_{n}(k)$ closed under left (or right) Borel action and for: (2) a class of Borel regular subgroups of classical groups. We give a partial affirmative answer to the conjecture for general regular subgroups of $\operatorname{SL}_{n}(k)$.
We describe a general method for expanding a truncated $G$-iterative Hasse–Schmidt derivation, where $G$ is an algebraic group. We give examples of algebraic groups for which our method works.
Let $U$ be a unipotent group which is graded in the sense that it has an extension $H$ by the multiplicative group of the complex numbers such that all the weights of the adjoint action on the Lie algebra of $U$ are strictly positive. We study embeddings of $H$ in a general linear group $G$ which possess Grosshans-like properties. More precisely, suppose $H$ acts on a projective variety $X$ and its action extends to an action of $G$ which is linear with respect to an ample line bundle on $X$. Then, provided that we are willing to twist the linearization of the action of $H$ by a suitable (rational) character of $H$, we find that the $H$-invariants form a finitely generated algebra and hence define a projective variety $X/\!/H$; moreover, the natural morphism from the semistable locus in $X$ to $X/\!/H$ is surjective, and semistable points in $X$ are identified in $X/\!/H$ if and only if the closures of their $H$-orbits meet in the semistable locus. A similar result applies when we replace $X$ by its product with the projective line; this gives us a projective completion of a geometric quotient of a $U$-invariant open subset of $X$ by the action of the unipotent group $U$.
This paper concerns the classification of isogeny classes of $p$-divisible groups with saturated Newton polygons. Let $S$ be a normal Noetherian scheme in positive characteristic $p$ with a prime Weil divisor $D$. Let ${\mathcal{X}}$ be a $p$-divisible group over $S$ whose geometric fibers over $S\setminus D$ (resp. over $D$) have the same Newton polygon. Assume that the Newton polygon of ${\mathcal{X}}_{D}$ is saturated in that of ${\mathcal{X}}_{S\setminus D}$. Our main result (Corollary 1.1) says that ${\mathcal{X}}$ is isogenous to a $p$-divisible group over $S$ whose geometric fibers are all minimal. As an application, we give a geometric proof of the unpolarized analogue of Oort’s conjecture (Oort, J. Amer. Math. Soc. 17(2) (2004), 267–296; 6.9).
This is the first of three papers in which we give a moduli interpretation of the second flip in the log minimal model program for $\overline{M}_{g}$, replacing the locus of curves with a genus $2$ Weierstrass tail by a locus of curves with a ramphoid cusp. In this paper, for $\unicode[STIX]{x1D6FC}\in (2/3-\unicode[STIX]{x1D716},2/3+\unicode[STIX]{x1D716})$, we introduce new $\unicode[STIX]{x1D6FC}$-stability conditions for curves and prove that they are deformation open. This yields algebraic stacks $\overline{{\mathcal{M}}}_{g}(\unicode[STIX]{x1D6FC})$ related by open immersions $\overline{{\mathcal{M}}}_{g}(2/3+\unicode[STIX]{x1D716}){\hookrightarrow}\overline{{\mathcal{M}}}_{g}(2/3){\hookleftarrow}\overline{{\mathcal{M}}}_{g}(2/3-\unicode[STIX]{x1D716})$. We prove that around a curve $C$ corresponding to a closed point in $\overline{{\mathcal{M}}}_{g}(2/3)$, these open immersions are locally modeled by variation of geometric invariant theory for the action of $\text{Aut}(C)$ on the first-order deformation space of $C$.
We prove a general criterion for an algebraic stack to admit a good moduli space. This result may be considered as a generalization of the Keel–Mori theorem, which guarantees the existence of a coarse moduli space for a separated Deligne–Mumford stack. We apply this result to prove that the moduli stacks $\overline{{\mathcal{M}}}_{g,n}(\unicode[STIX]{x1D6FC})$ parameterizing $\unicode[STIX]{x1D6FC}$-stable curves introduced in [J. Alper et al., Second flip in the Hassett–Keel program: a local description, Compositio Math. 153 (2017), 1547–1583] admit good moduli spaces.
We show that any $n$-dimensional Fano manifold $X$ with $\unicode[STIX]{x1D6FC}(X)=n/(n+1)$ and $n\geqslant 2$ is K-stable, where $\unicode[STIX]{x1D6FC}(X)$ is the alpha invariant of $X$ introduced by Tian. In particular, any such $X$ admits Kähler–Einstein metrics and the holomorphic automorphism group $\operatorname{Aut}(X)$ of $X$ is finite.
If $(G,V)$ is a polar representation with Cartan subspace $\mathfrak{c}$ and Weyl group $W$, it is shown that there is a natural morphism of Poisson schemes $\mathfrak{c}\oplus \mathfrak{c}^{\ast }/W\rightarrow V\oplus V^{\ast }/\!\!/\!\!/G$. This morphism is conjectured to be an isomorphism of the underlying reduced varieties if$(G,V)$ is visible. The conjecture is proved for visible stable locally free polar representations and some other examples.
Let $k$ be a finite extension of $\mathbb{Q}_{p}$, let ${\mathcal{G}}$ be an absolutely simple split reductive group over $k$, and let $K$ be a maximal unramified extension of $k$. To each point in the Bruhat–Tits building of ${\mathcal{G}}_{K}$, Moy and Prasad have attached a filtration of ${\mathcal{G}}(K)$ by bounded subgroups. In this paper we give necessary and sufficient conditions for the dual of the first Moy–Prasad filtration quotient to contain stable vectors for the action of the reductive quotient. Our work extends earlier results by Reeder and Yu, who gave a classification in the case when $p$ is sufficiently large. By passing to a finite unramified extension of $k$ if necessary, we obtain new supercuspidal representations of ${\mathcal{G}}(k)$.
We show that the pair (X, –KX) is K-unstable for a del Pezzo manifold X of degree 5 with dimension 4 or 5. This disproves a conjecture of Odaka and Okada.
Given a relative faithfully flat pointed scheme over the spectrum of a discrete valuation ring $X\rightarrow S$, this paper is motivated by the study of the natural morphism from the fundamental group scheme of the generic fiber $X_{\unicode[STIX]{x1D702}}$ to the generic fiber of the fundamental group scheme of $X$. Given a torsor $T\rightarrow X_{\unicode[STIX]{x1D702}}$ under an affine group scheme $G$ over the generic fiber of $X$, we address the question of finding a model of this torsor over $X$, focusing in particular on the case where $G$ is finite. We provide several answers to this question, showing for instance that, when $X$ is integral and regular of relative dimension 1, such a model exists on some model $X^{\prime }$ of $X_{\unicode[STIX]{x1D702}}$ obtained by performing a finite number of Néron blowups along a closed subset of the special fiber of $X$. Furthermore, we show that when $G$ is étale, then we can find a model of $T\rightarrow X_{\unicode[STIX]{x1D702}}$ under the action of some smooth group scheme. In the first part of the paper, we show that the relative fundamental group scheme of $X$ has an interpretation as the Tannaka Galois group of a Tannakian category constructed starting from the universal torsor.
We study actions of Lie supergroups, in particular, the hitherto elusive notion of orbits through odd (or more general) points. Following categorical principles, we derive a conceptual framework for their treatment and therein prove general existence theorems for the isotropy (or stabiliser) supergroups and orbits through general points. In this setting, we show that the coadjoint orbits always admit a (relative) supersymplectic structure of Kirillov–Kostant–Souriau type. Applying a family version of Kirillov’s orbit method, we decompose the regular representation of an odd Abelian supergroup into an odd direct integral of characters and construct universal families of representations, parametrised by a supermanifold, for two different super variants of the Heisenberg group.
We define truncated displays over rings in which a prime $p$ is nilpotent, we associate crystals to truncated displays, and we define functors from truncated displays to truncated Barsotti–Tate groups.
Toric quiver varieties (moduli spaces of quiver representations) are studied. Given a quiver and a weight, there is an associated quasi-projective toric variety together with a canonical embedding into projective space. It is shown that for a quiver with no oriented cycles the homogeneous ideal of this embedded projective variety is generated by elements of degree at most 3. In each fixed dimension d up to isomorphism there are only finitely many d-dimensional toric quiver varieties. A procedure for their classification is outlined.
We give a decomposition formula for computing the state polytope of a reducible variety in terms of the state polytopes of its components: if a polarized projective variety X is a chain of subvarieties Xi satisfying some further conditions, then the state polytope of X is the Minkowski sum of the state polytopes of Xi translated by a vector τ, which can be readily computed from the ideal of Xi. The decomposition is in the strongest sense in that the vertices of the state polytope of X are precisely the sum of vertices of the state polytopes of Xi translated by τ. We also give a similar decomposition formula for the Hilbert–Mumford index of the Hilbert points of X. We give a few examples of the state polytope and the Hilbert–Mumford index computation of reducible curves, which are interesting in the context of the log minimal model program for the moduli space of stable curves.
The notion of Berman–Gibbs stability was originally introduced by Berman for $\mathbb{Q}$-Fano varieties $X$. We show that the pair $(X,-K_{X})$ is K-stable (respectively K-semistable) provided that $X$ is Berman–Gibbs stable (respectively semistable).