Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T18:48:09.653Z Has data issue: false hasContentIssue false

On Berman–Gibbs stability and K-stability of $\mathbb{Q}$-Fano varieties

Published online by Cambridge University Press:  26 November 2015

Kento Fujita*
Affiliation:
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan email fujita@math.kyoto-u.ac.jp

Abstract

The notion of Berman–Gibbs stability was originally introduced by Berman for $\mathbb{Q}$-Fano varieties $X$. We show that the pair $(X,-K_{X})$ is K-stable (respectively K-semistable) provided that $X$ is Berman–Gibbs stable (respectively semistable).

Type
Research Article
Copyright
© The Author 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berman, R., K-polystability of Q-Fano varieties admitting Kähler–Einstein metrics, Invent. Math., to appear, arXiv:1205.6214 [math.DG].Google Scholar
Berman, R., Kähler–Einstein metrics, canonical random point processes and birational geometry, Preprint (2013), arXiv:1307.3634 [math.DG].Google Scholar
Chen, X., Donaldson, S. and Sun, S., Kähler–Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), 183197.CrossRefGoogle Scholar
Chen, X., Donaldson, S. and Sun, S., Kähler–Einstein metrics on Fano manifolds, II: limits with cone angle less than 2𝜋, J. Amer. Math. Soc. 28 (2015), 199234.CrossRefGoogle Scholar
Chen, X., Donaldson, S. and Sun, S., Kähler–Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2𝜋 and completion of the main proof, J. Amer. Math. Soc. 28 (2015), 235278.CrossRefGoogle Scholar
Donaldson, S., Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289349.CrossRefGoogle Scholar
Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).Google Scholar
Lazarsfeld, R., Positivity in algebraic geometry, II: Positivity for Vector Bundles, and Multiplier Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) vol. 49 (Springer, Berlin, 2004).CrossRefGoogle Scholar
Li, C. and Xu, C., Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), 197232.CrossRefGoogle Scholar
Mustaţă, M., The multiplier ideals of a sum of ideals, Trans. Amer. Math. Soc. 354 (2002), 205217.CrossRefGoogle Scholar
Mustaţă, M., Multiplier ideals of hyperplane arrangements, Trans. Amer. Math. Soc. 358 (2006), 50155023.CrossRefGoogle Scholar
Odaka, Y., A generalization of the Ross–Thomas slope theory, Osaka. J. Math. 50 (2013), 171185.Google Scholar
Odaka, Y. and Sano, Y., Alpha invariant and K-stability of ℚ-Fano varieties, Adv. Math. 229 (2012), 28182834.CrossRefGoogle Scholar
Ross, J. and Thomas, R., A study of the Hilbert–Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), 201255.CrossRefGoogle Scholar
Takagi, S., Formulas for multiplier ideals on singular varieties, Amer. J. Math. 128 (2006), 13451362.CrossRefGoogle Scholar
Tian, G., Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 137.CrossRefGoogle Scholar
Tian, G., K-stability and Kähler–Einstein metrics, Comm. Pure Appl. Math. 68 (2015), 10851156.CrossRefGoogle Scholar