Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T08:16:08.311Z Has data issue: false hasContentIssue false

Second flip in the Hassett–Keel program: a local description

Published online by Cambridge University Press:  18 May 2017

Jarod Alper
Affiliation:
Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia email jarod.alper@anu.edu.au
Maksym Fedorchuk
Affiliation:
Mathematics Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA email maksym.fedorchuk@bc.edu
David Ishii Smyth
Affiliation:
Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia email david.smyth@anu.edu.au
Frederick van der Wyck
Affiliation:
Goldman Sachs International, 120 Fleet Street, London EC4A 2BE, UK email frederick.vanderwyck@gmail.com

Abstract

This is the first of three papers in which we give a moduli interpretation of the second flip in the log minimal model program for $\overline{M}_{g}$, replacing the locus of curves with a genus $2$ Weierstrass tail by a locus of curves with a ramphoid cusp. In this paper, for $\unicode[STIX]{x1D6FC}\in (2/3-\unicode[STIX]{x1D716},2/3+\unicode[STIX]{x1D716})$, we introduce new $\unicode[STIX]{x1D6FC}$-stability conditions for curves and prove that they are deformation open. This yields algebraic stacks $\overline{{\mathcal{M}}}_{g}(\unicode[STIX]{x1D6FC})$ related by open immersions $\overline{{\mathcal{M}}}_{g}(2/3+\unicode[STIX]{x1D716}){\hookrightarrow}\overline{{\mathcal{M}}}_{g}(2/3){\hookleftarrow}\overline{{\mathcal{M}}}_{g}(2/3-\unicode[STIX]{x1D716})$. We prove that around a curve $C$ corresponding to a closed point in $\overline{{\mathcal{M}}}_{g}(2/3)$, these open immersions are locally modeled by variation of geometric invariant theory for the action of $\text{Aut}(C)$ on the first-order deformation space of $C$.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alper, J., On the local quotient structure of Artin stacks , J. Pure Appl. Algebra 214 (2010), 15761591.CrossRefGoogle Scholar
Alper, J., Good moduli spaces for Artin stacks , Ann. Inst. Fourier (Grenoble) 63 (2013), 23492402.CrossRefGoogle Scholar
Alper, J., Adequate moduli spaces and geometrically reductive group schemes , Algebr. Geom. 1 (2014), 489531.Google Scholar
Alper, J., Fedorchuk, M. and Smyth, D. I., Singularities with G m -action and the log minimal model program for M g , J. reine angew. Math. 721 (2016), 141, doi:10.1515/crelle-2014-0063.Google Scholar
Alper, J., Fedorchuk, M. and Smyth, D. I., Second flip in the Hassett–Keel program: projectivity, Int. Math. Res. Not. IMRN (2016), doi:10.1093/imrn/rnw216.Google Scholar
Alper, J., Fedorchuk, M. and Smyth, D. I., Second flip in the Hassett–Keel program: existence of good moduli spaces , Compositio Math. 153 (2017), 15841609.Google Scholar
Alper, J., Hall, J. and Rydh, D., A Luna étale slice theorem for algebraic stacks, Preprint (2015), arXiv:1504.06467.Google Scholar
Alper, J. and Kresch, A., Equivariant versal deformations of semistable curves , Michigan Math. J. 65 (2016), 227250.Google Scholar
Casalaina-Martin, S., Jensen, D. and Laza, R., The geometry of the ball quotient model of the moduli space of genus four curves , in Compact moduli spaces and vector bundles, Contemporary Mathematics, vol. 564 (American Mathematical Society, Providence, RI, 2012), 107136.Google Scholar
Casalaina-Martin, S., Jensen, D. and Laza, R., Log canonical models and variation of GIT for genus 4 canonical curves , J. Algebraic Geom. 23 (2014), 727764.Google Scholar
Casalaina-Martin, S. and Laza, R., Simultaneous semi-stable reduction for curves with ADE singularities , Trans. Amer. Math. Soc. 365 (2013), 22712295.CrossRefGoogle Scholar
Cornalba, M., On the projectivity of the moduli spaces of curves , J. reine angew. Math. 443 (1993), 1120.Google Scholar
Deligne, P. and Mumford, D., The irreducibility of the space of curves of given genus , Publ. Math. Inst. Hautes Études Sci. 36 (1969), 75109.Google Scholar
Dolgachev, I. V. and Hu, Y., Variation of geometric invariant theory quotients , Publ. Math. Inst. Hautes Études Sci. 87 (1998), 551; with an appendix by Nicolas Ressayre.Google Scholar
Edidin, D., Notes on the construction of the moduli space of curves , in Recent progress in intersection theory (Bologna, 1997), Trends in Mathematics (Birkhäuser, Boston, MA, 2000), 85113.Google Scholar
Fedorchuk, M., The final log canonical model of the moduli space of stable curves of genus 4 , Int. Math. Res. Not. IMRN 2012 (2012), 56505672.Google Scholar
Fedorchuk, M. and Smyth, D. I., Stability of genus five canonical curves , in A celebration of algebraic geometry, Clay Mathematics Proceedings, vol. 18, eds Hassett, B., McKernan, J., Starr, J. and Vakil, R. (American Mathematical Society, Providence, RI, 2013).Google Scholar
Gieseker, D., Lectures on moduli of curves, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 69 (Tata Institute of Fundamental Research, Bombay, 1982).Google Scholar
Hassett, B., Classical and minimal models of the moduli space of curves of genus two , in Geometric methods in algebra and number theory, Progress in Mathematics, vol. 235 (Birkhäuser, Boston, MA, 2005), 169192.CrossRefGoogle Scholar
Hassett, B. and Hyeon, D., Log canonical models for the moduli space of curves: the first divisorial contraction , Trans. Amer. Math. Soc. 361 (2009), 44714489.CrossRefGoogle Scholar
Hassett, B. and Hyeon, D., Log minimal model program for the moduli space of stable curves: the first flip , Ann. of Math. (2) 177 (2013), 911968.Google Scholar
Hyeon, D. and Lee, Y., Log minimal model program for the moduli space of stable curves of genus three , Math. Res. Lett. 17 (2010), 625636.Google Scholar
Hyeon, D. and Lee, Y., A birational contraction of genus 2 tails in the moduli space of genus 4 curves I , Int. Math. Res. Not. IMRN 2014 (2014), 37353757.Google Scholar
Hyeon, D. and Morrison, I., Stability of tails and 4-canonical models , Math. Res. Lett. 17 (2010), 721729.CrossRefGoogle Scholar
Keel, S. and Mori, S., Quotients by groupoids , Ann. of Math. (2) 145 (1997), 193213.Google Scholar
Kollár, J., Projectivity of complete moduli , J. Differential Geom. 32 (1990), 235268.Google Scholar
Luna, D., Slices étales , in Sur les groupes algébriques, Bulletin Société Mathématique de France, Mémoire, vol. 33 (Société Mathématique de France, Paris, 1973), 81105.Google Scholar
Morrison, I., GIT constructions of moduli spaces of stable curves and maps , in Geometry of Riemann surfaces and their moduli spaces, Surveys in Differential Geometry, vol. 14 (International Press, Somerville, MA, 2009), 315369.Google Scholar
Müller, F., The final log canonical model of M 6 , Algebra Number Theory 8 (2014), 11131126.CrossRefGoogle Scholar
Mumford, D., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34 (Springer, Berlin, 1965).Google Scholar
Mumford, D., Stability of projective varieties , Enseign. Math. (2) 23 (1977), 39110.Google Scholar
Schubert, D., A new compactification of the moduli space of curves , Compositio Math. 78 (1991), 297313.Google Scholar
Smyth, D. I., Modular compactifications of the space of pointed elliptic curves II , Compositio Math. 147 (2011), 18431884.CrossRefGoogle Scholar
Thaddeus, M., Geometric invariant theory and flips , J. Amer. Math. Soc. 9 (1996), 691723.CrossRefGoogle Scholar
van der Wyck, F., Moduli of singular curves and crimping, PhD thesis, Harvard (2010).Google Scholar