To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The recent observations of ferromagnetic order in several two-dimensional (2D) materials have generated an enormous interest in the physical mechanisms underlying 2D magnetism. In the present Prospective Article, we show that Density Functional Theory combined with either classical Monte Carlo simulations or renormalized spin-wave theory can predict Curie temperatures for ferromagnetic insulators that are in quantitative agreement with experiments. The case of materials with in-plane anisotropy is then discussed, and it is argued that finite size effects may lead to observable magnetic order in macroscopic samples even if long range magnetic order is forbidden by the Mermin–Wagner theorem.
Additional crystallographic data are given for the recently reported mineral middlebackite, which has been described for discoveries at Iron Knob in South Australia and Passo di San Lugano near Trento, Italy. The material examined in the present study was from a third finding of the mineral, viz. from a quartz outcrop at Mooloo Downs Station in Western Australia within which it was co-located with the chemically- and structurally-related mineral moolooite, CuIIC2O4·nH2O, reported by Clarke and Williams (1986). In this study, the crystal structure was elucidated independently of the other studies using a combination of the a priori charge flipping and simulated annealing methods with synchrotron radiation diffraction (SRD) powder data. The principal crystal data for the Mooloo Downs material are: space group P21/c with lattice parameters a = 7.2659(18) Å, b = 5.7460(11) Å, c = 5.6806(11) Å, β = 104.588(3)°; Vc = 229.46(18) Å3; empirical formula CuII2C2O4(OH)2 with 2 formula units per unit cell; and calculated density = 3.605 g cm−3. The lattice parameters agree approximately with values given for the other studies, but not within the reported error estimates. The atom coordinates, interatomic distances, and angles for the Mooloo Downs material are compared with those from the other studies using single crystal data, with the values from all three studies agreeing approximately, but again not within the reported uncertainties. The crystal chemistry found for middlebackite received strong confirmation through the synthesis for the first time of di-copper oxalate di-hydroxide. Laboratory X-ray diffraction powder data for the synthetic form of the mineral from this study agree closely with the SRD data for the natural mineral.
The third edition of the To.Sca.Lake Summer School, co-sponsored by ICDD, was organized on the Como Lake shore in Northern Italy, and has seen the participation of more than 50 attendees from four different continents. The main topic was Total Scattering Analysis in the real and reciprocal spaces (by the Pair Distribution Function and the Debye Scattering Equation approaches, respectively). with additional contributions on Small Angle X-ray Scattering and Light Scattering methods, the latter proposed in the static and dynamic modes.
Polarized resonant soft x-ray scattering (RSoXS) can leverage contrast between domains in mass, chemical bonds, and chain orientation to characterize polymer thin films. Although mass and chemical contrast can be predicted from the absorption spectra, the origins of orientational contrast are not fully understood. For example, in the case where one domain is crystalline, it is not obvious how the total crystallinity will affect the anisotropy. Using a simple calculation, we predict polarized RSoXS of model structures and compare with experiment. Through experiments and simulations, we demonstrate that scattering anisotropy is not monotonically related to local order but instead peaks when 50% of domains have aligned chains, i.e., when the sample is 50% crystalline.
The crystal structure of cefprozil monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Cefprozil monohydrate crystallizes in space group P21 (#4) with a = 11.26513(6), b = 11.34004(5), c = 14.72649(11) Å, β = 90.1250(4)°, V = 1881.262(15) Å3, and Z = 4. Although a reasonable fit was obtained using an orthorhombic model, closer examination showed that many peaks were split and/or had shoulders, and thus the true symmetry was monoclinic. DFT calculations revealed that one carboxylic acid proton moved to an amino group. The structure thus contains one ion pair and one pair of neutral molecules. This protonation was confirmed by infrared spectroscopy. There is an extensive array of hydrogen bonds resulting in a three-dimensional network. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.
A novel solid-clad-by-liquid method was developed to form a 10-m long by 10-mm wide by 80-μm thick Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite tape. Three deformation routes (cold rolling, cold rolling with intermediate annealing, and cold rolling combined with warm rolling) have been investigated in short Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrate. To optimize the dynamic continuous annealing parameters for the long composite substrates, air-cooled and furnace-cooled annealing procedures were compared in short Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrates. Improved cube texture of 98.7% in a 10-m long by 10-mm wide by 80-μm thick Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrate was achieved via warm rolling deformation at 550 °C and two-step dynamic continuous annealing (750 °C for 1 h followed by 1200 °C for 1 h). The yield strength, Curie temperature, and saturation magnetization of 176 MPa, 324 K, and 18 emu/g, respectively, were obtained.
The hierarchical Au-loaded SnO2 nanoflowers were synthesized using a new developed self-reductive hydrothermal method, of which the gas-sensing properties were enhanced significantly. The SnO2 hierarchical nanoflowers were composed of well-defined nanosheets with a specific surface area of around 84 m2/g. Gas sensors made of pure and Au-doped SnO2 were fabricated, and their gas-sensing properties were characterized. The 1.0 at.% Au-loaded SnO2 sensor prepared by the new developed self-reductive method showed much more excellent selectivity toward ethanol at 200 °C than the one prepared with the conventional hydrothermal method. Its response to ethanol was around 3 times higher than that of the pure SnO2 sensor. A very wide detection range of 1–500 ppm for ethanol, good repeatability, and long-term stability were also approved.
[K0.5Na0.5NbO3]1−x[BaNi0.5Nb0.5O3−δ]x (KNBNNO, 0 ≤ x ≤ 0.3) films have been fabricated on different substrates for the first time, using a modified chemical solution deposition method. The microstructure, optical properties, ferromagnetism, and substrate effects of KNBNNO films were assessed, and we found that BaNi0.5Nb0.5O3−δ (BNNO) content was a key factor in determining the properties of the final products. The lower band gap of KNBNNO is due to the band-to-band transition from hybridized Ni 3d and O 2p to Nb 4d states. Moreover, with increasing x from 0 to 0.3, the magnetism transition process of the samples from diamagnetism to ferromagnetism may originate from the competition between ferromagnetic exchange interactions in Ni2+–VO2−–Ni2+ and superexchange interactions in Ni2+–Ni2+. Notably, absorption behaviors in the visible light wave band for KNBNNO films have been realized, which makes it possible to use KNBNNO films for perovskite solar cell applications.
Three-dimensional nano-mulberries consisting of SnO2 nanoparticles have been successfully anchored onto the surfaces of reduced graphene oxide (RGO) to construct hierarchical hybrids—SnO2@RGO with a one-pot approach. The SnO2 nano-mulberries with different amounts of RGO have been produced for optimizing their composition effect on Li storage performance. Specifically, SnO2@RGO hybrids incorporated with optimized amount of RGO nanosheets (∼20.8%) exhibit highly enhanced capacity of ∼1025 mA h/g at 0.1 A/g and a reversible capacity of 750 mA h/g over 100 cycles at 0.2 A/g. The materials also deliver much better rate performance with average specific capacity of ∼498 mA h/g at 2 A/g in comparison with that of SnO2 nano-mulberries. After cycling for 600 times at 1 A/g, the SnO2@RGO electrodes still maintain high reversible capacity of ∼602 mA h/g, corresponding to 35% of the second cycle and 133% of the 70th discharge capacity.
Three-dimensional graphene (3D-GN)/Cu/Fe3O4 composite support materials were synthesized by a modified chemical reduction method using graphene oxide precursor. A 3D-GN/Cu/Fe3O4 biosensor was prepared by coating the electrode with laccase. The electrochemical properties of the biosensor were investigated by cyclic voltammetry (CV) and differential pulse voltammetry using potassium ferricyanide, phosphate-buffered saline (PBS) solution, and bisphenol A (BPA) solution. The current response of 3D-GN/Cu/Fe3O4 biosensors presents a remarkable sensitivity based on CV. The linear range of BPA is 7.2–18 μM using differential pulse voltammetry in PBS solution (pH = 4.0). A linear fitting equation of the laccase biosensor was observed for the current response as a function of BPA concentration. The detection limit was decreased to 1.7 μM. The detection approach herein turns out to be highly sensitive, has a wide linear range, and exhibits excellent stability.
Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.
Effects of adding different amounts of SiCp on the microstructure and mechanical properties of the as-cast and as-extruded Mg–7% Zn–1.5% Cu (ZC71) alloys were studied. The as-cast ZC71 alloy consisted of α-Mg phase that encircled with the MgZnCu and Mg(Zn,Cu)2 intermetallics. Hot extrusion has led to a grain-refined structure with distributed intermetallics along the extrusion direction. Adding SiCp decreased the grain size values for the as-extruded composites. The Vickers hardness values increased with SiCp addition for both conditions. The ultimate tensile strength and tensile elongation (El%) values reached the optimum level with 5 wt% SiCp addition. More SiCp additions led to more agglomerations and decrement in strength and elongation. The yield tensile strength also increased with SiC additions. Adding 5 wt% SiCp changed the brittle fracture to the more quasi-cleavage. Hot extrusion altered the fracture mode to more ductile for all composites.
3-[1-[4-(2-Methylpropyl)phenyl]ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C21H21FN4S) has been synthesized as a member of a series of triazolothiadiazoles having NSAIDs moieties with cytotoxic activity. The crystal structure of this new compound has been solved and refined using conventional laboratory X-ray powder diffraction data and optimized using density functional techniques. The final structure solution was achieved by Rietveld refinement using soft restraints on all non-H atom bond lengths and angles. This compound crystallizes in $P\bar{1}\;$ space group, with the unit cell parameters a = 5.5880(4) Å, b = 9.3074(7) Å, c = 19.497(4) Å, α = 99.311(10)°, β = 91.925(9)°, γ = 98.199(6)°, and V = 988.8(2) Å3. To complement and verify the structure solution of the compound, the density functional theory (DFT) calculations were performed by using the local density approximation and the generalized gradient approximation for exchange-correlation energy. In order to see the effect of the van der Waals interactions on the electronic structure, the relevant structure was also optimized with B3LYP-D2, PBE-D2, and optB88-vdW functionals. The refined crystal structure was confirmed by the DFT calculations. The best agreement with the experimental structure was achieved by optB88-vdW functional.