Published online by Cambridge University Press: 06 September 2019
The hierarchical Au-loaded SnO2 nanoflowers were synthesized using a new developed self-reductive hydrothermal method, of which the gas-sensing properties were enhanced significantly. The SnO2 hierarchical nanoflowers were composed of well-defined nanosheets with a specific surface area of around 84 m2/g. Gas sensors made of pure and Au-doped SnO2 were fabricated, and their gas-sensing properties were characterized. The 1.0 at.% Au-loaded SnO2 sensor prepared by the new developed self-reductive method showed much more excellent selectivity toward ethanol at 200 °C than the one prepared with the conventional hydrothermal method. Its response to ethanol was around 3 times higher than that of the pure SnO2 sensor. A very wide detection range of 1–500 ppm for ethanol, good repeatability, and long-term stability were also approved.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.