To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The crystal structure of cloxacillin sodium monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Cloxacillin sodium monohydrate crystallizes in space group P212121 (#19) with a = 7.989 36(12), b = 10.918 09(10), c = 25.559 3(6) Å, V = 2229.50(5) Å3, and Z = 4. The crystal structure is characterized by corner-sharing chains of irregular NaO5 polyhedra along the a-axis. The carboxylate group chelates to the Na and bridges two Na cations. The coordination sphere is completed by the water molecule and a carbonyl group. The Na–O bonds are mostly ionic but have some covalent character. The bond valence sum of the Na is 1.14. The water molecule acts as a donor to the carboxylate group and a carbonyl oxygen. It is an acceptor in C–H⋯O hydrogen bonds from a methyl group and a ring carbon. The crystal structure of cloxacillin sodium monohydrate is very similar to that of the fluorinated derivative (CSD Refcode BEBCAM), reflecting the similarity of the lattice parameters. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.
Fatigue of superelastic Nitinol in the mixed austenite–martensite state was examined in tension using center-tapered dog-bone specimens. A prestraining procedure, mimicking the load history of a medical device component, was applied prior to cycling: specimens were loaded to a fully martensitic state, unloaded partway into the lower plateau to a mixed-phase state, and then subjected to sinusoidal displacement cycles. Strain maps, obtained using digital image correlation, showed substantial variation in local mean and alternating strains across the gage section. In situ surface imaging using a high-speed camera confirmed crack initiation in a narrow transition zone between austenite and martensite that undergoes cyclic stress-induced martensitic transformation (SIMT). Fatigue life data showed an abrupt transition from high-cycle runouts to low-cycle fatigue failures at a stress amplitude level corresponding to the threshold for activating cyclic SIMT. The fatigue threshold can be estimated from the tensile loading–unloading curve.
High-current switching performance of ovonic threshold switching (OTS) selectors have successfully enabled the commercialization of high-density three-dimensional (3D) stackable phase-change memory in Intel’s 3D Xpoint technology. This bridges the huge performance gap between dynamic random access memory (DRAM) and Flash. Similar to phase-change memory, OTS uses chalcogenide-based materials, but whereas phase-change memory reversibly switches between a high-resistance amorphous phase and a low-resistance crystalline phase, OTS freezes in the amorphous phase. In this article, we review recent developments in OTS materials and their performance in devices, especially current density and selectivity. Advantages and challenges of OTS devices in the integration with the phase-change memory are discussed. We introduce the evolution of theoretical models for explaining the OTS behavior, including thermal runaway, field-induced nucleation, and generation/recombination of charge carriers.
Computational acceleration of performance metric-based materials discovery via high-throughput screening and machine learning methods is becoming widespread. Nevertheless, development and optimization of the opto-electronic properties that depend on dilute concentrations of point defects in new materials have not significantly benefited from these advances. Here, the authors present an informatics and simulation suite to computationally accelerate these processes. This will enable faster and more fundamental materials research, and reduce the cost and time associated with the materials development cycle. Analogous to the new avenues enabled by current first-principles-based property databases, this type of framework will open entire new research frontiers as it proliferates.
The lightest element has carried a heavy burden for half a century. Expectations for the hydrogen economy, first proposed in the 1970s, have been high. But hydrogen as a renewable, low-carbon fuel for vehicles, heating, and energy storage has remained evasive, held back by high costs, low efficiency, and a lack of infrastructure and storage technologies.
Phase-change materials (PCMs) have demonstrated a wide range of potential applications ranging from electronic memories to photonic devices. These applications are enabled by the unconventional portfolio of properties that characterizes crystalline PCMs. Here, we address the origin of these unusual properties and how they are related to the application potential of these materials. Evidence will be presented that the properties are related to an unconventional bonding mechanism. Employing a novel map, which separates solids according to the number of electrons transferred and shared between adjacent atoms, it is shown that PCMs occupy a well-defined region. Depicting physical properties such as the optical dielectric constant as the third dimension in the map reveals systematic property trends. Such trends can be utilized to unravel the origins of the unconventional materials properties or alternatively, as a means to optimize them.
The practical realization of rechargeable organic batteries is stalled by their low electron conductivity, which limits the organic-active material content in the electrode composite and results in a low net electrode energy density. Additionally, the dissolution of active materials into the electrolyte causes a short cycle life. In this study, a conductive polymer mixture, poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate, containing a small amount of sugar alcohol was used as the binder and separator in a rechargeable organic battery. Consequently, the active material content was increased up to 80 wt%, and the cycle life was extended.
The rapidly growing demand for data storage and processing, driven by artificial intelligence (AI) and other data-intensive applications, is posing a serious challenge for current computing devices based on the von Neumann architecture. For every calculation, data sets need to be shuffled sequentially between the processor, and multiple memory and storage units through bandwidth-limited and energy-inefficient interconnects, typically causing 40% power wastage. Phase-change materials (PCMs) show great promise to break this bottleneck by enabling nonvolatile memory devices that can optimize the complex memory hierarchy, and neuro-inspired computing devices that can unify computing with storage in memory cells. The articles in this issue of MRS Bulletin highlight recent breakthroughs in the fundamental materials science, as well as electronic and photonic implementations of these novel devices based on PCMs.
The processes of singlet fission and triplet fusion could allow state-of-the-art photovoltaic devices to surpass the Shockley–Queisser limit by optimizing the utilized solar spectrum by reducing thermal relaxation and inaccessible sub-bandgap photons, respectively. Triplet fusion demands precise control of the spin-triplet state population, and requires a sensitizer to efficiently populate the triplet state of an acceptor molecule. In this perspective, we highlight the established field of sensitized upconversion and further examine alternative triplet sensitization routes, including the possibility of bulk solid-state semiconductors as triplet sensitizers, which provide a new avenue for charge transfer-based triplet sensitization rather than excitonic triplet energy transfer.
The authors report on 7Li, 19F, and 1H pulsed field gradient NMR measurements of 26 organosilyl nitrile solvent-based electrolytes of either lithium bis(trifluorosulfonyl)imide (LiTFSI) or lithium hexafluorophosphate. Lithium transport numbers (as high as 0.50) were measured and are highest in the LiTFSI electrolytes. The authors also report on solvent blend electrolytes of fluoroorganosilyl (FOS) nitrile solvent mixed with ethylene carbonate (EC) and diethyl carbonate. Solvent diffusion measurements on an electrolyte with 6% FOS suggest both the FOS and EC solvate the lithium cation. By comparing lithium transport and transference numbers, the authors find less ion pairing in FOS nitrile carbonate blend electrolytes and difluoroorganosilyl nitrile electrolytes.