To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give explicit combinatorial descriptions of three Schur functors arising in the theory of pre-Lie algebras. The first of them leads to a functorial description of the underlying vector space of the universal enveloping pre-Lie algebra of a given Lie algebra, strengthening the Poincaré-Birkhoff-Witt (PBW) theorem of Segal. The two other Schur functors provide functorial descriptions of the underlying vector spaces of the universal multiplicative enveloping algebra and of the module of Kähler differentials of a given pre-Lie algebra. An important consequence of such descriptions is an interpretation of the cohomology of a pre-Lie algebra with coefficients in a module as a derived functor for the category of modules over the universal multiplicative enveloping algebra.
This collection of papers defends a dynamic view of reality which is founded on the assumption of the objective existence of the flow of time. The vindication makes use of a metaphysical theory of the flow of time developed by the author which is based on the notion of dynamic existence.
We generalise some known results for limit groups over free groups and residually free groups to limit groups over Droms RAAGs and residually Droms RAAGs, respectively. We show that limit groups over Droms RAAGs are free-by-(torsion-free nilpotent). We prove that if S is a full subdirect product of type $FP_s(\mathbb{Q})$ of limit groups over Droms RAAGs with trivial center, then the projection of S to the direct product of any s of the limit groups over Droms RAAGs has finite index. Moreover, we compute the growth of homology groups and the volume gradients for limit groups over Droms RAAGs in any dimension and for finitely presented residually Droms RAAGs of type $FP_m$ in dimensions up to m. In particular, this gives the values of the analytic $L^2$-Betti numbers of these groups in the respective dimensions.
Let $\mathfrak{A}$ be a finite abelian group. In this paper, we classify harmonic $\mathfrak{A}$-covers of a tropical curve $\Gamma$ (which allow dilation along edges and at vertices) in terms of the cohomology group of a suitably defined sheaf on $\Gamma$. We give a realisability criterion for harmonic $\mathfrak{A}$-covers by patching local monodromy data in an extended homology group on $\Gamma$. As an explicit example, we work out the case $\mathfrak{A}=\mathbb{Z}/p\mathbb{Z}$ and explain how realisability for such covers is related to the nowhere-zero flow problem from graph theory.
Let $G= N\rtimes H$ be a locally compact group which is a semi-direct product of a closed normal subgroup N and a closed subgroup H. The Bohr compactification ${\rm Bohr}(G)$ and the profinite completion ${\rm Prof}(G)$ of G are, respectively, isomorphic to semi-direct products $Q_1 \rtimes {\rm Bohr}(H)$ and $Q_2 \rtimes {\rm Prof}(H)$ for appropriate quotients $Q_1$ of ${\rm Bohr}(N)$ and $Q_2$ of ${\rm Prof}(N).$ We give a precise description of $Q_1$ and $Q_2$ in terms of the action of H on appropriate subsets of the dual space of N. In the case where N is abelian, we have ${\rm Bohr}(G)\cong A \rtimes {\rm Bohr}(H)$ and ${\rm Prof}(G)\cong B \rtimes {\rm Prof}(H),$ where A (respectively B) is the dual group of the group of unitary characters of N with finite H-orbits (respectively with finite image). Necessary and sufficient conditions are deduced for G to be maximally almost periodic or residually finite. We apply the results to the case where $G= \Lambda\wr H$ is a wreath product of discrete groups; we show in particular that, in case H is infinite, ${\rm Bohr}(\Lambda\wr H)$ is isomorphic to ${\rm Bohr}(\Lambda^{\rm Ab}\wr H)$ and ${\rm Prof}(\Lambda\wr H)$ is isomorphic to ${\rm Prof}(\Lambda^{\rm Ab} \wr H),$ where $\Lambda^{\rm Ab}=\Lambda/ [\Lambda, \Lambda]$ is the abelianisation of $\Lambda.$ As examples, we compute ${\rm Bohr}(G)$ and ${\rm Prof}(G)$ when G is a lamplighter group and when G is the Heisenberg group over a unital commutative ring.
We prove that the nonvarying strata of abelian and quadratic differentials in low genus have trivial tautological rings and are affine varieties. We also prove that strata of k-differentials of infinite area are affine varieties for all k. Vanishing of homology in degree higher than the complex dimension follows as a consequence for these affine strata. Moreover we prove that the stratification of the Hodge bundle for abelian and quadratic differentials of finite area is extremal in the sense that merging two zeros in each stratum leads to an extremal effective divisor in the boundary. A common feature throughout these results is a relation of divisor classes in strata of differentials as well as its incarnation in Teichmüller dynamics.
We consider a corank 1, finitely determined, quasi-homogeneous map germ f from $(\mathbb{C}^2,0)$ to $(\mathbb{C}^3,0)$. We describe the embedded topological type of a generic hyperplane section of $f(\mathbb{C}^2)$, denoted by $\gamma_f$, in terms of the weights and degrees of f. As a consequence, a necessary condition for a corank 1 finitely determined map germ $g\,{:}\,(\mathbb{C}^2,0)\rightarrow (\mathbb{C}^3,0)$ to be quasi-homogeneous is that the plane curve $\gamma_g$ has either two or three characteristic exponents. As an application of our main result, we also show that any one-parameter unfolding $F=(f_t,t)$ of f which adds only terms of the same degrees as the degrees of f is Whitney equisingular.
This paper deals with applications of Voronin’s universality theorem for the Riemann zeta-function $\zeta$. Among other results we prove that every plane smooth curve appears up to a small error in the curve generated by the values $\zeta(\sigma+it)$ for real t where $\sigma\in(1/2,1)$ is fixed. In this sense, the values of the zeta-function on any such vertical line provides an atlas for plane curves. In the same framework, we study the curvature of curves generated from $\zeta(\sigma+it)$ when $\sigma>1/2$ and we show that there is a connection with the zeros of $\zeta'(\sigma+it)$. Moreover, we clarify under which conditions the real and the imaginary part of the zeta-function are jointly universal.
Erdős, Graham and Selfridge considered, for each positive integer n, the least value of $t_n$ so that the integers $n+1, n+2, \dots, n+t_n $ contain a subset the product of whose members with n is a square. An open problem posed by Granville concerns the size of $t_n$, under the assumption of the ABC conjecture. We establish some results on the distribution of $t_n$, and in the process solve Granville’s problem unconditionally.
This paper is concerned with the study of the fine Selmer group of an abelian variety over a $\mathbb{Z}_{p}$-extension which is not necessarily cyclotomic. It has been conjectured that these fine Selmer groups are always torsion over $\mathbb{Z}_{p}[[ \Gamma ]]$, where $\Gamma$ is the Galois group of the $\mathbb{Z}_{p}$-extension in question. In this paper, we shall provide several strong evidences towards this conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the cyclotomic $\mathbb{Z}_{p}$-extension, then it holds for almost all $\mathbb{Z}_{p}$-extensions. We then carry out a similar study for the fine Selmer group of an elliptic modular form. When the modular forms are ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups of the specialization. This latter result allows us to show that the conjectural torsionness in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end with some speculations on the torsionness of fine Selmer groups over an arbitrary p-adic Lie extension.
We demonstrate that the phenomenon of popular differences (aka the phenomenon of large intersections) holds for natural families of polynomial patterns in rings of integers of number fields. If K is a number field with ring of integers $\mathcal{O}_K$ and $E \subseteq \mathcal{O}_K$ has positive upper Banach density $d^*(E) = \delta > 0$, we show, inter alia:
(1) if $p(x) \in K[x]$ is an intersective polynomial (i.e., p has a root modulo m for every $m \in \mathcal{O}_K$) with $p(\mathcal{O}_K) \subseteq \mathcal{O}_K$ and $r, s \in \mathcal{O}_K$ are distinct and nonzero, then for any $\varepsilon > 0$, there is a syndetic set $S \subseteq \mathcal{O}_K$ such that for any $n \in S$,
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n)\} \subseteq E \right\} \right) > \delta^3 - \varepsilon. \end{align*}
Moreover, if ${s}/{r} \in \mathbb{Q}$, then there are syndetically many $n \in \mathcal{O}_K$ such that
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n), x + (r+s)p(n)\} \subseteq E \right\} \right)> \delta^4 - \varepsilon; \end{align*}
(2) if $\{p_1, \dots, p_k\} \subseteq K[x]$ is a jointly intersective family (i.e., $p_1, \dots, p_k$ have a common root modulo m for every $m \in \mathcal{O}_K$) of linearly independent polynomials with $p_i(\mathcal{O}_K) \subseteq \mathcal{O}_K$, then there are syndetically many $n \in \mathcal{O}_K$ such that
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + p_1(n), \dots, x + p_k(n)\} \subseteq E \right\} \right)> \delta^{k+1} - \varepsilon. \end{align*}
These two results generalise and extend previous work of Frantzikinakis and Kra [21] and Franztikinakis [19] on polynomial configurations in $\mathbb{Z}$ and build upon recent work of the authors and Best [2] on linear patterns in general abelian groups. The above combinatorial results follow from multiple recurrence results in ergodic theory via a version of Furstenberg’s correspondence principle. The ergodic-theoretic recurrence theorems require a sharpening of existing tools for handling polynomial multiple ergodic averages. A key advancement made in this paper is a new result on the equidistribution of polynomial orbits in nilmanifolds, which can be seen as a far-reaching generalisation of Weyl’s equidistribution theorem for polynomials of several variables:
(3) let $d, k, l \in \mathbb{N}$. Let $(X, \mathcal{B}, \mu, T_1, \dots, T_l)$ be an ergodic, connected $\mathbb{Z}^l$-nilsystem. Let $\{p_{i,j} \;:\; 1 \le i \le k, 1 \le j \le l\} \subseteq \mathbb{Q}[x_1, \dots, x_d]$ be a family of polynomials such that $p_{i,j}\left( \mathbb{Z}^d \right) \subseteq \mathbb{Z}$ and $\{1\} \cup \{p_{i,j}\}$ is linearly independent over $\mathbb{Q}$. Then the $\mathbb{Z}^d$-sequence $\left( \prod_{j=1}^l{T_j^{p_{1,j}(n)}}x, \dots, \prod_{j=1}^l{T_j^{p_{k,j}(n)}}x \right)_{n \in \mathbb{Z}^d}$ is well-distributed in $X^k$ for every x in a co-meager set of full measure.
We construct finitely generated torsion-free solvable groups G that have infinite rank, but such that all finitely generated torsion-free metabelian subquotients of G are virtually abelian. In particular all finitely generated metabelian subgroups of G are virtually abelian. The existence of such groups shows that there is no “torsion-free version” of P. Kropholler’s theorem, which characterises solvable groups of infinite rank via their metabelian subquotients.
For a given genus $g \geq 1$, we give lower bounds for the maximal number of rational points on a smooth projective absolutely irreducible curve of genus g over $\mathbb{F}_q$. As a consequence of Katz–Sarnak theory, we first get for any given $g>0$, any $\varepsilon>0$ and all q large enough, the existence of a curve of genus g over $\mathbb{F}_q$ with at least $1+q+ (2g-\varepsilon) \sqrt{q}$ rational points. Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower bound of the form $1+q+1.71 \sqrt{q}$ valid for $g \geq 3$ and odd $q \geq 11$. Finally, explicit constructions of towers of curves improve this result: We show that the bound $1+q+4 \sqrt{q} -32$ is valid for all $g\ge 2$ and for all q.
We recall several categories of graphs which are useful for describing homotopy-coherent versions of generalised operads (e.g. cyclic operads, modular operads, properads, and so on), and give new, uniform definitions for their morphisms. This allows for straightforward comparisons, and we use this to show that certain free-forgetful adjunctions between categories of generalised operads can be realised at the level of presheaves. This includes adjunctions between operads and cyclic operads, between dioperads and augmented cyclic operads, and between wheeled properads and modular operads.
We investigate when a Legendrian knot in the standard contact ${{\mathbb{R}}}^3$ has a non-orientable exact Lagrangian filling. We prove analogs of several results in the orientable setting, develop new combinatorial obstructions to fillability, and determine when several families of knots have such fillings. In particular, we completely determine when an alternating knot (and more generally a plus-adequate knot) is decomposably non-orientably fillable and classify the fillability of most torus and 3-strand pretzel knots. We also describe rigidity phenomena of decomposable non-orientable fillings, including finiteness of the possible normal Euler numbers of fillings and the minimisation of crosscap numbers of fillings, obtaining results which contrast in interesting ways with the smooth setting.
We assume that the electron carries quantised angular momentum as it moves around the positively charged proton in the hydrogen atom. This leads to a quantisation of the total energy of the electron. The Bohr model is a semiclassical model, combining classical orbits with the idea of quantising a physical quantity. This model explains some of the features of the real hydrogen atom (e.g. energy quantisation), but fails to explain other properties, such as the shape and the related binding properties.