We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a sequential rule, where an item is chosen into the group, such as a university faculty member, only if his/her score is better than the average score of those already belonging to the group. We study four variables: the average score of the members of the group after k items have been selected, the time it takes (in terms of the number of observed items) to assemble a group of k items, the average score of the group after n items have been observed, and the number of items kept after the first n items have been observed. We develop the relationships between these variables, and obtain their asymptotic behavior as k (respectively, n) tends to ∞. The assumption throughout is that the items are independent and identically distributed with a continuous distribution. Though knowledge of this distribution is not needed to implement the selection rule, the asymptotic behavior does depend on the distribution. We study in some detail the exponential, Pareto, and beta distributions. Generalizations of the ‘better than average’ rule to the β better than average rules are also considered. These are rules where an item is admitted to the group only if its score is better than β times the present average of the group, where β > 0.
We consider a critical discrete-time branching process with generation dependent immigration. For the case in which the mean number of immigrating individuals tends to ∞ with the generation number, we prove functional limit theorems for centered and normalized processes. The limiting processes are deterministically time-changed Wiener, with three different covariance functions depending on the behavior of the mean and variance of the number of immigrants. As an application, we prove that the conditional least-squares estimator of the offspring mean is asymptotically normal, which demonstrates an alternative case of normality of the estimator for the process with nondegenerate offspring distribution. The norming factor is where α(n) denotes the mean number of immigrating individuals in the nth generation.
In this paper our object is to show that a certain class of nonstationary random processes can locally be approximated by stationary processes. The class of processes we are considering includes the time-varying autoregressive conditional heteroscedastic and generalised autoregressive conditional heteroscedastic processes, amongst others. The measure of deviation from stationarity can be expressed as a function of a derivative random process. This derivative process inherits many properties common to stationary processes. We also show that the derivative processes obtained here have alpha-mixing properties.
We consider an epidemic model where the spread of the epidemic can be described by a discrete-time Galton-Watson branching process. Between times n and n + 1, any infected individual is detected with unknown probability π and the numbers of these detected individuals are the only observations we have. Detected individuals produce a reduced number of offspring in the time interval of detection, and no offspring at all thereafter. If only the generation sizes of a Galton-Watson process are observed, it is known that one can only estimate the first two moments of the offspring distribution consistently on the explosion set of the process (and, apart from some lattice parameters, no parameters that are not determined by those moments). Somewhat surprisingly, in our context, where we observe a binomially distributed subset of each generation, we are able to estimate three functions of the parameters consistently. In concrete situations, this often enables us to estimate π consistently, as well as the mean number of offspring. We apply the estimators to data for a real epidemic of classical swine fever.
Consider the random variable Ln defined as the length of a longest common subsequence of two random strings of length n and whose random characters are independent and identically distributed over a finite alphabet. Chvátal and Sankoff showed that the limit γ=limn→∞E[Ln]/n is well defined. The exact value of this constant is not known, but various methods for the computation of upper and lower bounds have been discussed in the literature. Even so, high-precision bounds are hard to come by. In this paper we discuss how large deviation theory can be used to derive a consistent sequence of upper bounds, (qm)m∈ℕ, on γ, and how Monte Carlo simulation can be used in theory to compute estimates, q̂m, of the qm such that, for given Ξ > 0 and Λ ∈ (0,1), we have P[γ < q̂ < γ + Ξ] ≥ Λ. In other words, with high probability the result is an upper bound that approximates γ to high precision. We establish O((1 − Λ)−1Ξ−(4+ε)) as a theoretical upper bound on the complexity of computing q̂m to the given level of accuracy and confidence. Finally, we discuss a practical heuristic based on our theoretical approach and discuss its empirical behavior.
In this paper, we extend the integer-valued model class to give a nonnegative integer-valued bilinear process, denoted by INBL(p,q,m,n), similar to the real-valued bilinear model. We demonstrate the existence of this strictly stationary process and give an existence condition for it. The estimation problem is discussed in the context of a particular simple case. The method of moments is applied and the asymptotic joint distribution of the estimators is given: it turns out to be a normal distribution. We present numerical examples and applications of the model to real time series data on meningitis and Escherichia coli infections.
We formulate a localization property of wavelet coefficients for processes with stationary increments, in the estimation problem associated with the processes. A general setting for the estimation is adopted and examples that fit this setting are given. An evaluation of wavelet coefficient decay with respect to shift k∈ℕ is explicitly derived (only the asymptotic behavior, for large k, was previously known). It is this evaluation that makes it possible to establish the localization property of the wavelet coefficients. In doing so, it turns out that the theory of positive-definite functions plays an important role. As applications, we show that, in the wavelet coefficient domain, estimators that use a simple moment method are nearly as good as maximum likelihood estimators. Moreover, even though the underlying process is long-range dependent and process domain estimates imply the validity of a noncentral limit theorem, for the wavelet coefficient domain estimates we always obtain a central limit theorem with a small prescribed error.
We investigate a sequence of Galton-Watson branching processes with immigration, where the offspring mean tends to its critical value 1 and the offspring variance tends to 0. It is shown that the fluctuation limit is an Ornstein-Uhlenbeck-type process. As a consequence, in contrast to the case in which the offspring variance tends to a positive limit, it transpires that the conditional least-squares estimator of the offspring mean is asymptotically normal. The norming factor is n3/2, in contrast to both the subcritical case, in which it is n1/2, and the nearly critical case with positive limiting offspring variance, in which it is n.
We propose a stochastic modelling of the PCR amplification process by a size-dependent branching process starting as a supercritical Bienaymé-Galton-Watson transient phase and then having a saturation near-critical size-dependent phase. This model allows us to estimate the probability of replication of a DNA molecule at each cycle of a single PCR trajectory with a very good accuracy.
We consider a single-type supercritical or near-critical size-dependent branching process {Nn}n such that the offspring mean converges to a limit m ≥ 1 with a rate of convergence of order as the population size Nn grows to ∞ and the variance may vary at the rate where −1 ≤ β < 1. The offspring mean m(N) = m + μN-α + o(N-α) depends on an unknown parameter θ0 belonging either to the asymptotic model (θ0 = m) or to the transient model (θ0 = μ). We estimate θ0 on the nonextinction set from the observations {Nh,…,Nn} by using the conditional least-squares method weighted by (where γ ∈ ℝ) in the approximate model mθ,ν̂n(·), where ν̂n is any estimation of the parameter of the nuisance part (O(N-α) if θ0 = m and o(N-α) if θ0 = μ). We study the strong consistency of the estimator of θ0 as γ varies, with either h or n - h remaining constant as n → ∞. We use either a minimum-contrast method or a Taylor approximation of the first derivative of the contrast. The main condition for obtaining strong consistency concerns the asymptotic behavior of the process. We also give the asymptotic distribution of the estimator by using a central-limit theorem for random sums and we show that the best rate of convergence is attained when γ = 1 + β.
This paper introduces a new estimation technique for discretely observed diffusion processes. Transform functions are applied to transform the data to obtain good and easily calculated estimators of both the drift and diffusion coefficients. Consistency and asymptotic normality of the resulting estimators is investigated. Power transforms are used to estimate the parameters of affine diffusions, for which explicit estimators are obtained.
This paper applies the theory of the quasi-likelihood method to model-based inference for sample surveys. Currently, much of the theory related to sample surveys is based on the theory of maximum likelihood. The maximum likelihood approach is available only when the full probability structure of the survey data is known. However, this knowledge is rarely available in practice. Based on central limit theory, statisticians are often willing to accept the assumption that data have, say, a normal probability structure. However, such an assumption may not be reasonable in many situations in which sample surveys are used. We establish a framework for sample surveys which is less dependent on the exact underlying probability structure using the quasi-likelihood method.
A sequence of first-order integer-valued autoregressive (INAR(1)) processes is investigated, where the autoregressive-type coefficient converges to 1. It is shown that the limiting distribution of the conditional least squares estimator for this coefficient is normal and the rate of convergence is n3/2. Nearly critical Galton–Watson processes with unobservable immigration are also discussed.
This paper considers a competing risks system with p pieces of software where each piece follows the model by Littlewood (1980) described as follows. The failure rate of a piece of software relies on the residual number of bugs remaining in the software where each bug produces failures at varying rates. In effect, bugs with higher failure rates tend to be observed earlier in the testing period. Tasks are assigned to the system and the task completion times as well as the software failure times are assumed to be independent of each other. The system is observed over a fixed testing period and the system reliability upon test termination is examined. An estimator of the system reliability is presented and its asymptotic properties as well as finite-sample properties are obtained.
Estimation methods for the directional measure of a stationary planar random set Z, based only on discretized realizations of Z, are discussed. Properties of the discretized set that can be derived by comparing neighbouring grid points are used. Larger grid configurations of more than two grid points are considered. It is shown that the probabilities of observing the various types of configurations can be expressed in terms of the first contact distribution function of Z (with a finite structuring element). An important prerequisite result concerning deterministic dilation areas is also established. The inference on the mean normal measure based on 2×2 configurations is discussed in detail.
The goal of this paper is to investigate properties of statistical procedures based on numbers of different patterns by using generating functions for the probabilities of a prescribed number of occurrences of given patterns in a random text. The asymptotic formulae are derived for the expected value of the number of words occurring a given number of times and for the covariance matrix. The form of the optimal linear test based on these statistics is established. These problems appear in testing for the randomness of a string of binary bits, DNA sequencing, source coding, synchronization, quality control protocols, etc. Indeed, the probabilities of repeated (overlapping) patterns are important in information theory (the second-order properties of relative frequencies)
and molecular biology problems (finding patterns with unexpectedly low or high frequencies).
The Bernstein-von Mises theorem, concerning the convergence of suitably normalized and centred posterior density to normal density, is proved for a certain class of linearly parametrized parabolic stochastic partial differential equations (SPDEs) as the number of Fourier coefficients in the expansion of the solution increases to infinity. As a consequence, the Bayes estimators of the drift parameter, for smooth loss functions and priors, are shown to be strongly consistent, asymptotically normal and locally asymptotically minimax (in the Hajek-Le Cam sense), and asymptotically equivalent to the maximum likelihood estimator as the number of Fourier coefficients become large. Unlike in the classical finite dimensional SDEs, here the total observation time and the intensity of noise remain fixed.
We consider a parametrization of the Heath-Jarrow-Morton (HJM) family of term structure of interest rate models that allows a finite-dimensional Markovian representation of the stochastic dynamics. This parametrization results from letting the volatility function depend on time to maturity and on two factors: the instantaneous spot rate and one fixed-maturity forward rate. Our main purpose is an estimation methodology for which we have to model the observations under the historical probability measure. This leads us to consider as an additional third factor the market price of interest rate risk, that connects the historical and the HJM martingale measures. Assuming that the information comes from noisy observations of the fixed-maturity forward rate, the purpose is to estimate recursively, on the basis of this information, the three Markovian factors as well as the parameters in the model, in particular those in the volatility function. This leads to a nonlinear filtering problem, for the solution of which we describe an approximation methodology, based on time discretization and quantization. We prove the convergence of the approximate filters for each of the observed trajectories.
We study the last passage time and its asymptotic distribution for minimum contrast estimators defined through the minimization of a convex criterion function based on U-functionals. This includes cases of non-smooth estimators for vector valued parameters. We also derive a Bahadur-type representation and the law of iterated logarithms for such estimators.
The tapered (or generalized) Pareto distribution, also called the modified Gutenberg-Richter law, has been used to model the sizes of earthquakes. Unfortunately, maximum likelihood estimates of the cutoff parameter are substantially biased. Alternative estimates for the cutoff parameter are presented, and their properties discussed.