Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:07:29.775Z Has data issue: false hasContentIssue false

A simple integer-valued bilinear time series model

Published online by Cambridge University Press:  01 July 2016

P. Doukhan*
Affiliation:
CREST
A. Latour*
Affiliation:
Université Pierre Mendès-France
D. Oraichi*
Affiliation:
CHU Sainte-Justine
*
Postal address: Laboratoire de Statistique, CREST, Timbre J340, 3 avenue Pierre Larousse, 92240 Malakoff Cedex, France. Email address: paul.doukhan@ensae.fr
∗∗ Postal address: Laboratoire de Statistique et Analyse de Données, Université Pierre Mendès-France, Bâtiment Sciences Humaines et Mathématiques, 1251 avenue Centrale, BP 47, 38040 Grenoble Cedex 09, France. Email address: alain.latour@upmf-grenoble.fr
∗∗∗ Postal address: Centre de Recherche du CHU Sainte-Justine, 3175 chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada. Email address: driss.oraichi@recherche-ste-justine.qc.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we extend the integer-valued model class to give a nonnegative integer-valued bilinear process, denoted by INBL(p,q,m,n), similar to the real-valued bilinear model. We demonstrate the existence of this strictly stationary process and give an existence condition for it. The estimation problem is discussed in the context of a particular simple case. The method of moments is applied and the asymptotic joint distribution of the estimators is given: it turns out to be a normal distribution. We present numerical examples and applications of the model to real time series data on meningitis and Escherichia coli infections.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2006 

References

Al-Osh, M. A. and Alzaid, A. A. (1991). Binomial autoregressive moving average models. Commun. Statist. Stoch. Models 7, 261282.Google Scholar
Alzaid, A. and Al-Osh, M. (1990). An integer-valued pth-order autoregressive structure (INAR(p)) process. J. Appl. Prob. 27, 314324.Google Scholar
Anderson, T. W. (1971). The Statistical Analysis of Time Series. John Wiley, New York.Google Scholar
Bardet, J.-M., Doukhan, P. and León, J. R. (2005). Uniform limit theorems for the periodogram of a weakly dependent time series and their applications to Whittle's estimate. Submitted.Google Scholar
Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd edn. Springer, Berlin.Google Scholar
Davis, R. A., Dunsmuir, W. T. M. and Streett, S. B. (2003). Observation-driven models for Poisson counts. Biometrika 90, 777790.Google Scholar
Dedecker, J. and Doukhan, P. (2003). A new covariance inequality and applications. Stoch. Process. Appl. 106, 6380.CrossRefGoogle Scholar
Dewald, L. S., Lewis, P. A. W. and McKenzie, E. (1989). A bivariate first-order autoregressive time series model in exponential variables (BEAR (1)). Manag. Sci. 35, 12361246.Google Scholar
Dion, J.-P., Gauthier, G. and Latour, A. (1995). Branching processes with immigration and integer-valued times series. Serdica 21, 123136.Google Scholar
Doukhan, P. and Louhichi, S. (2001). Functional estimation of a density under a new weak dependence condition. Scand. J. Statist. 28, 325341.CrossRefGoogle Scholar
Du, J. and Li, Y. (1991). The integer-valued autoregressive (INAR(p)) model. J. Time Ser. Anal. 12, 129142.Google Scholar
Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.CrossRefGoogle Scholar
Ferland, R., Latour, A. and Oraichi, D. (2006). Integer-valued GARCH process. To appear in J. Time Ser. Anal. Google Scholar
Gauthier, G. and Latour, A. (1994). Convergence forte des estimateurs des paramètres d'un processus GENAR(p). Ann. Sci. Math. Québec 18, 4971.Google Scholar
Granger, C. W. J. and Andersen, A. (1978). Non-linear time series modelling. In Applied Time Series Analysis (Proc. 1st Symp., Tulsa, OK, 1976), Academic Press, New York, pp. 2538.Google Scholar
Jacobs, P. A. and Lewis, P. A. W. (1978). Discrete time series generated by mixtures. I: Correlational and runs properties. J. R. Statist. Soc. B 40, 94105.Google Scholar
Jacobs, P. A. and Lewis, P. A. W. (1978). Discrete time series generated by mixtures. II: Asymptotic properties. J. R. Statist. Soc. B 40, 222228.Google Scholar
Jacobs, P. A. and Lewis, P. A. W. (1983). Stationary discrete autoregressive-moving average time series generated by mixtures. J. Time Ser. Anal. 4, 1936.Google Scholar
Latour, A. (1997). The multivariate GINAR(p) process. Adv. Appl. Prob. 29, 228248.CrossRefGoogle Scholar
Latour, A. (1998). Existence and stochastic structure of a non-negative integer-valued autoregressive process. J. Time Ser. Anal. 19, 439455.Google Scholar
Lewis, P. A. W. and McKenzie, E. (1991). Minification processes and their transformations. J. Appl. Prob. 28, 4557.Google Scholar
MacDonald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman and Hall, Boca Raton, FL.Google Scholar
McKenzie, E. (1986). Autoregressive moving-average processes with negative-binomial and geometric marginal distributions. Adv. Appl. Prob. 18, 679705.Google Scholar
McKenzie, E. (1988). Some ARMA models for dependent sequences of Poisson counts. Adv. Appl. Prob. 20, 822835.Google Scholar
Park, Y. and Kim, M. (1997). Some basic and asymptotic properties in INMA(q) processes. J. Korean Statist. Soc. 26, 155170.Google Scholar
Pham, D. T. (1985). Bilinear Markovian representation and bilinear models. Stoch. Process. Appl. 20, 295306.CrossRefGoogle Scholar
Pham, D. T. (1986). The mixing property of bilinear and generalised random coefficient autoregressive models. Stoch. Process. Appl. 23, 291300.Google Scholar
Rydberg, T. H. and Shephard, N. (2000). BIN models for trade-by-trade data. Modelling the number of trades in a fixed interval of time. Tech. Rep. 0740, Econometric Society. Available at http://ideas.repec.org/p/ecm/wc2000/0740.html.Google Scholar
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics (Wiley Ser. Prob. Math. Stat.). John Wiley, New York.Google Scholar
Streett, S. B. (2000). Some observation driven models for time series. , Department of Statistics, Colorado State University.Google Scholar
Tong, H. (1990). Non-linear Time Series: A Dynamical System Approach. Clarendon Press, Oxford.Google Scholar
Wang, Z.-K. (1978). Stochastic Processes. Scientific Press, Beijing.Google Scholar
Wei, W. W. S. (1990). Time Series Analysis: Univariate and Multivariate Methods. Addison-Wesley, Boston, MA.Google Scholar