Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T20:34:06.939Z Has data issue: false hasContentIssue false

Estimation of the offspring mean in a supercritical or near-critical size-dependent branching process

Published online by Cambridge University Press:  01 July 2016

N. Lalam*
Affiliation:
Institut National de la Recherche Agronomique, Jouy-en-Josas
C. Jacob*
Affiliation:
Institut National de la Recherche Agronomique, Jouy-en-Josas
*
Current address: Eurandom, PO Box 513, 5600 MB Eindhoven, The Netherlands. Email address: lalam@eurandom.tue.nl
∗∗ Postal address: INRA, Laboratoire de Biométrie, 78352 Jouy-en-Josas Cedex, France. Email address: cj@banian.jouy.inra.fr

Abstract

We consider a single-type supercritical or near-critical size-dependent branching process {Nn}n such that the offspring mean converges to a limit m ≥ 1 with a rate of convergence of order as the population size Nn grows to ∞ and the variance may vary at the rate where −1 ≤ β < 1. The offspring mean m(N) = m + μN + o(N) depends on an unknown parameter θ0 belonging either to the asymptotic model (θ0 = m) or to the transient model (θ0 = μ). We estimate θ0 on the nonextinction set from the observations {Nh,…,Nn} by using the conditional least-squares method weighted by (where γ ∈ ℝ) in the approximate model mθ,ν̂n(·), where ν̂n is any estimation of the parameter of the nuisance part (O(N) if θ0 = m and o(N) if θ0 = μ). We study the strong consistency of the estimator of θ0 as γ varies, with either h or n - h remaining constant as n → ∞. We use either a minimum-contrast method or a Taylor approximation of the first derivative of the contrast. The main condition for obtaining strong consistency concerns the asymptotic behavior of the process. We also give the asymptotic distribution of the estimator by using a central-limit theorem for random sums and we show that the best rate of convergence is attained when γ = 1 + β.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2004 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Basawa, I. V., Mallick, A. K., McCormick, W. P. and Taylor, R. L. (1989). Bootstrapping explosive autoregressive processes. Ann. Statist. 17, 14791486.Google Scholar
[2] Datta, S. (1995). Limit theory and bootstrap for explosive and partially explosive autoregression. Stoch. Process. Appl. 57, 285304.CrossRefGoogle Scholar
[3] Fang, D. and Wang, H. (1999). Population-size-dependent branching processes with independent stationary random environments. Chinese J. Appl. Prob. Statist. 15, 345350.Google Scholar
[4] Fujimagari, T. (1976). Controlled Galton–Watson process and its asymptotic behavior. Kodai Math. Sem. Rep. 27, 1118.Google Scholar
[5] Godambe, V. P. (1985). The foundations of finite sample estimation in stochastic processes. Biometrika 72, 419428.CrossRefGoogle Scholar
[6] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.Google Scholar
[7] Hopfner, R. (1985). On some classes of population-size-dependent Galton–Watson processes. J. Appl. Prob. 22, 2536.CrossRefGoogle Scholar
[8] Jacob, C. (2002). Weighted least squares estimation of the limit offspring mean of a supercritical size-dependent branching process from partial observations. Tech. Rep., Applied Mathematics and Informatics, INRA, Jouy-en-Josas.Google Scholar
[9] Keller, G., Kersting, G. and Rosler, U. (1987). On the asymptotic behaviour of discrete time stochastic growth processes. Ann. Prob. 15, 305343.Google Scholar
[10] Kersting, G. (1986). On recurrence and transience of growth models. J. Appl. Prob. 23, 614625.Google Scholar
[11] Kersting, G. (1990). Some properties of stochastic difference equations. In Stochastic Modelling in Biology, ed. Tautu, P., World Scientific, Singapore, pp. 328339.Google Scholar
[12] Klebaner, F. C. (1984). On population-size-dependent branching processes. Adv. Appl. Prob. 16, 3055.Google Scholar
[13] Klebaner, F. C. (1989). Stochastic difference equations and generalized gamma distributions. Ann. Prob. 17, 178188.Google Scholar
[14] Küster, P., (1985). Asymptotic growth of controlled Galton–Watson processes. Ann. Prob. 13, 11571178.Google Scholar
[15] Labkovskii, V. A. (1972). A limit theorem for generalized branching process depending on the size of the population. Theory Prob. Appl. 17, 7285.CrossRefGoogle Scholar
[16] Lai, T. L. (1994). Asymptotic properties of nonlinear least squares estimates in stochastic regression models. Ann. Statist. 22, 19171930.Google Scholar
[17] Lai, T. L. and Wei, C. Z. (1983). Asymptotic properties of general autoregressive models and strong consistency of least-squares estimates of their parameters. J. Multivariate Anal. 13, 123.CrossRefGoogle Scholar
[18] Lalam, N. and Jacob, C. (2002). Estimation of the offspring mean in a supercritical or near-critical size-dependent branching process. Tech. Rep., Applied Mathematics and Informatics, INRA, Jouy-en-Josas.Google Scholar
[19] Levina, L. V., Leontovich, A. M. and Pyatetskii-Shapiro, I. I. (1968). On a controllable branching process. Prob. Peredachi Inf. 4, 7282.Google Scholar
[20] Maâouia, F. and Touati, A. (2000). Identification of multitype branching processes. C. R. Acad. Sci. Paris Sér. I Math. 331, 923928.CrossRefGoogle Scholar
[21] Pierre-Loti-Viaud, D. (1991). Grandes déviations pour une famille de processus de Galton–Watson dépendant de l'effectif de la population. Ann. Inst. H. Poincaré Prob. Statist. 27, 141179.Google Scholar
[22] Pierre-Loti-Viaud, D. (1994). A strong law and a central limit theorem for controlled Galton–Watson processes. J. Appl. Prob. 31, 2237.Google Scholar
[23] Rahimov, I. (1995). Random Sums and Branching Stochastic Processes (Lecture Notes Statist. 96). Springer, New York.Google Scholar
[24] Skouras, K. (2000). Strong consistency in nonlinear stochastic regression models. Ann. Statist. 28, 871879.CrossRefGoogle Scholar
[25] Wang, H. and Fang, D. (1999). Asymptotic behaviour of population-size-dependent branching processes in Markovian random environments. J. Appl. Prob. 36, 611619.Google Scholar
[26] White, J. S. (1958). The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Statist. 29, 11881197.CrossRefGoogle Scholar
[27] Wu, C. F. (1981). Asymptotic theory of nonlinear least squares estimation. Ann. Statist. 9, 501513.Google Scholar