To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to study all the natural first steps of the minimal model program for the moduli space of stable pointed curves. We prove that they admit a modular interpretation, and we study their geometric properties. As a particular case, we recover the first few Hassett–Keel log canonical models. As a by-product, we produce many birational morphisms from the moduli space of stable pointed curves to alternative modular projective compactifications of the moduli space of pointed curves.
We initiate and develop a framework to handle the specialisation morphism as a filtered morphism for the perverse, and for the perverse Leray filtration, on the cohomology with constructible coefficients of varieties and morphisms parameterised by a curve. As an application, we use this framework to carry out a detailed study of filtered specialisation for the Hitchin morphisms associated with the compactification of Dolbeault moduli spaces in [de 2018].
We study smoothing of pencils of curves on surfaces with normal crossings. As a consequence we show that the canonical divisor of $\overline {\mathcal {M}}_{g,n}$ is not pseudoeffective in some range, implying that $\overline {\mathcal {M}}_{12,6}$, $\overline {\mathcal {M}}_{12,7}$, $\overline {\mathcal {M}}_{13,4}$ and $\overline {\mathcal {M}}_{14,3}$ are uniruled. We provide upper bounds for the Kodaira dimension of $\overline {\mathcal {M}}_{12,8}$ and $\overline {\mathcal {M}}_{16}$. We also show that the moduli space of $(4g+5)$-pointed hyperelliptic curves $\overline {\mathcal {H}}_{g,4g+5}$ is uniruled. Together with a recent result of Schwarz, this concludes the classification of moduli of pointed hyperelliptic curves with negative Kodaira dimension.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.
In this paper, we construct a natural probability measure on the space of real branched coverings from a real projective algebraic curve $(X,c_X)$ to the projective line $(\mathbb{C} \mathbb {P}^1,\textit{conj} )$. We prove that the space of degree d real branched coverings having “many” real branched points (for example, more than $\sqrt {d}^{1+\alpha }$, for any $\alpha>0$) has exponentially small measure. In particular, maximal real branched coverings – that is, real branched coverings such that all the branched points are real – are exponentially rare.
The elliptic algebras in the title are connected graded $\mathbb {C}$-algebras, denoted $Q_{n,k}(E,\tau )$, depending on a pair of relatively prime integers $n>k\ge 1$, an elliptic curve E and a point $\tau \in E$. This paper examines a canonical homomorphism from $Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety $X_{n/k}$ for $Q_{n,k}(E,\tau )$. When $X_{n/k}$ is isomorphic to $E^g$ or the symmetric power $S^gE$, we show that the homomorphism $Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees $\le 3$ and the noncommutative scheme $\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$, respectively. When $X_{n/k}=E^g$ and $\tau =0$, the results about $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism $\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.
We derive a quadratic recursion relation for the linear Hodge integrals of the form $\langle \tau _{2}^{n}\lambda _{k}\rangle $. These numbers are used in a formula for Masur-Veech volumes of moduli spaces of quadratic differentials discovered by Chen, Möller and Sauvaget. Therefore, our recursion provides an efficient way of computing these volumes.
We prove a generalisation of the Brill-Noether theorem for the variety of special divisors$W^r_d(C)$ on a general curve C of prescribed gonality. Our main theorem gives a closed formula for the dimension of$W^r_d(C)$. We build on previous work of Pflueger, who used an analysis of the tropical divisor theory of special chains of cycles to give upper bounds on the dimensions of Brill-Noether varieties on such curves. We prove his conjecture, that this upper bound is achieved for a general curve. Our methods introduce logarithmic stable maps as a systematic tool in Brill-Noether theory. A precise relation between the divisor theory on chains of cycles and the corresponding tropical maps theory is exploited to prove new regeneration theorems for linear series with negative Brill-Noether number. The strategy involves blending an analysis of obstruction theories for logarithmic stable maps with the geometry of Berkovich curves. To show the utility of these methods, we provide a short new derivation of lifting for special divisors on a chain of cycles with generic edge lengths, proved using different techniques by Cartwright, Jensen, and Payne. A crucial technical result is a new realisability theorem for tropical stable maps in obstructed geometries, generalising a well-known theorem of Speyer on genus$1$ curves to arbitrary genus.
We show that the space $G^r_{\underline d}(X)$ of linear series of certain multi-degree $\underline d=(d_1,d_2)$ (including the balanced ones) and rank r on a general genus-g binary curve X has dimension $\rho _{g,r,d}=g-(r+1)(g-d+r)$ if nonempty, where $d=d_1+d_2$. This generalizes Caporaso’s result from the case $r\leq 2$ to arbitrary rank, and shows that the space of Osserman-limit linear series on a general binary curve has the expected dimension, which was known for $r\leq 2$. In addition, we show that the space $G^r_{\underline d}(X)$ is still of expected dimension after imposing certain ramification conditions with respect to a sequence of increasing effective divisors supported on two general points $P_i\in Z_i$, where $i=1,2$ and $Z_1,Z_2$ are the two components of X. Our result also has potential application to the lifting problem of divisors on graphs to divisors on algebraic curves.
We compactify and regularise the space of initial values of a planar map with a quartic invariant and use this construction to prove its integrability in the sense of algebraic entropy. The system has certain unusual properties, including a sequence of points of indeterminacy in $\mathbb {P}^{1}\!\times \mathbb {P}^{1}$. These indeterminacy points lie on a singular fibre of the mapping to a corresponding QRT system and provide the existence of a one-parameter family of special solutions.
Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.
Étant donné un groupe réductif $G$ sur une extension de degré fini de $\mathbb {Q}_p$ on classifie les $G$-fibrés sur la courbe introduite dans Fargues and Fontaine [Courbes et fibrés vectoriels en théorie de Hodge$p$-adique, Astérisque 406 (2018)]. Le résultat est interprété en termes de l'ensemble $B(G)$ de Kottwitz. On calcule également la cohomologie étale de la courbe à coefficients de torsion en lien avec la théorie du corps de classe local.
Let P and Q be relatively prime integers greater than 1, and let f be a real valued discretely supported function on a finite dimensional real vector space V. We prove that if $f_{P}(x)=f(Px)-f(x)$ and $f_{Q}(x)=f(Qx)-f(x)$ are both $\Lambda $-periodic for some lattice $\Lambda \subset V$, then so is f (up to a modification at $0$). This result is used to prove a theorem on the arithmetic of elliptic function fields. In the last section, we discuss the higher rank analogue of this theorem and explain why it fails in rank 2. A full discussion of the higher rank case will appear in a forthcoming work.
We focus on various dynamical invariants associated to monomial correspondences on toric varieties, using algebraic and arithmetic geometry. We find a formula for their dynamical degrees, relate the exponential growth of the degree sequences to a strict log-concavity condition on the dynamical degrees and compute the asymptotic rate of the growth of heights of points of such correspondences.
The Severi variety $V_{d,n}$ of plane curves of a given degree $d$ and exactly $n$ nodes admits a map to the Hilbert scheme $\mathbb{P}^{2[n]}$ of zero-dimensional subschemes of $\mathbb{P}^{2}$ of degree $n$. This map assigns to every curve $C\in V_{d,n}$ its nodes. For some $n$, we consider the image under this map of many known divisors of the Severi variety and its partial compactification. We compute the divisor classes of such images in $\text{Pic}(\mathbb{P}^{2[n]})$ and provide enumerative numbers of nodal curves. We also answer directly a question of Diaz–Harris [‘Geometry of the Severi variety’, Trans. Amer. Math. Soc.309 (1988), 1–34] about whether the canonical class of the Severi variety is effective.
Let $G$ be a connected split reductive group over a finite field $\mathbb{F}_{q}$ and $X$ a smooth projective geometrically connected curve over $\mathbb{F}_{q}$. The $\ell$-adic cohomology of stacks of $G$-shtukas is a generalization of the space of automorphic forms with compact support over the function field of $X$. In this paper, we construct a constant term morphism on the cohomology of stacks of shtukas which is a generalization of the constant term morphism for automorphic forms. We also define the cuspidal cohomology which generalizes the space of cuspidal automorphic forms. Then we show that the cuspidal cohomology has finite dimension and that it is equal to the (rationally) Hecke-finite cohomology defined by V. Lafforgue.
Classification of AS-regular algebras is one of the main interests in noncommutative algebraic geometry. We say that a $3$-dimensional quadratic AS-regular algebra is of Type EC if its point scheme is an elliptic curve in $\mathbb {P}^{2}$. In this paper, we give a complete list of geometric pairs and a complete list of twisted superpotentials corresponding to such algebras. As an application, we show that there are only two exceptions up to isomorphism among all $3$-dimensional quadratic AS-regular algebras that cannot be written as a twist of a Calabi–Yau AS-regular algebra by a graded algebra automorphism.
For complex connected, reductive, affine, algebraic groups G, we give a Lie-theoretic characterization of the semistability of principal G-co-Higgs bundles on the complex projective line ℙ1 in terms of the simple roots of a Borel subgroup of G. We describe a stratification of the moduli space in terms of the Harder–Narasimhan type of the underlying bundle.
Fix $d\geqslant 2$ and a field $k$ such that $\operatorname{char}k\nmid d$. Assume that $k$ contains the $d$th roots of $1$. Then the irreducible components of the curves over $k$ parameterizing preperiodic points of polynomials of the form $z^{d}+c$ are geometrically irreducible and have gonality tending to $\infty$. This implies the function field analogue of the strong uniform boundedness conjecture for preperiodic points of $z^{d}+c$. It also has consequences over number fields: it implies strong uniform boundedness for preperiodic points of bounded eventual period, which in turn reduces the full conjecture for preperiodic points to the conjecture for periodic points. Our proofs involve a novel argument specific to finite fields, in addition to more standard tools such as the Castelnuovo–Severi inequality.
The generalized Soulé character was introduced by H. Nakamura and Z. Wojtkowiak and is a generalization of Soulé’s cyclotomic character. In this paper, we prove that certain linear sums of generalized Soulé characters essentially coincide with the image of generalized Beilinson elements in K-groups under Soulé’s higher regulator maps. This result generalizes Huber–Wildeshaus’ theorem, which is a cyclotomic field case of our results, to an arbitrary number fields.