To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The moduli space of holomorphic maps from Riemann surfaces to the Grassmannian is known to have two kinds of compactifications: Kontsevich’s stable map compactification and Marian–Oprea–Pandharipande’s stable quotient compactification. Over a non-singular curve, the latter moduli space is Grothendieck’s Quot scheme. In this paper, we give the notion of ‘ ϵ-stable quotients’ for a positive real number ϵ, and show that stable maps and stable quotients are related by wall-crossing phenomena. We will also discuss Gromov–Witten type invariants associated to ϵ-stable quotients, and investigate them under wall crossing.
Gaudin subalgebras are abelian Lie subalgebras of maximal dimension spanned by generators of the Kohno–Drinfeld Lie algebra . We show that Gaudin subalgebras form a variety isomorphic to the moduli space of stable curves of genus zero with n+1 marked points. In particular, this gives an embedding of in a Grassmannian of (n−1)-planes in an n(n−1)/2-dimensional space. We show that the sheaf of Gaudin subalgebras over is isomorphic to a sheaf of twisted first-order differential operators. For each representation of the Kohno–Drinfeld Lie algebra with fixed central character, we obtain a sheaf of commutative algebras whose spectrum is a coisotropic subscheme of a twisted version of the logarithmic cotangent bundle of .
Let C be a proper smooth geometrically connected hyperbolic curve over a field of characteristic 0 and ℓ a prime number. We prove the injectivity of the homomorphism from the pro-ℓ mapping class group attached to the two dimensional configuration space of C to the one attached to C, induced by the natural projection. We also prove a certain graded Lie algebra version of this injectivity. Consequently, we show that the kernel of the outer Galois representation on the pro-ℓ pure braid group on C with n strings does not depend on n, even if n = 1. This extends a previous result by Ihara–Kaneko. By applying these results to the universal family over the moduli space of curves, we solve completely Oda's problem on the independency of certain towers of (infinite) algebraic number fields, which has been studied by Ihara, Matsumoto, Nakamura, Ueno and the author. Sequentially we obtain certain information of the image of this Galois representation and get obstructions to the surjectivity of the Johnson–Morita homomorphism at each sufficiently large even degree (as Oda predicts), for the first time for a proper curve.
We introduce a sequence of isolated curve singularities, the elliptic m-fold points, and an associated sequence of stability conditions, generalizing the usual definition of Deligne–Mumford stability. For every pair of integers 1≤m<n, we prove that the moduli problem of n-pointed m-stable curves of arithmetic genus one is representable by a proper irreducible Deligne–Mumford stack . We also consider weighted variants of these stability conditions, and construct the corresponding moduli stacks . In forthcoming work, we will prove that these stacks have projective coarse moduli and use the resulting spaces to give a complete description of the log minimal model program for .
We discuss the Mordell–Weil sieve as a general technique for proving results concerning rational points on a given curve. In the special case of curves of genus 2, we describe quite explicitly how the relevant local information can be obtained if one does not want to restrict to mod p information at primes of good reduction. We describe our implementation of the Mordell–Weil sieve algorithm and discuss its efficiency.
We exhibit a strong link between the Hall algebra HX of an elliptic curve X defined over a finite field 𝔽l (or, more precisely, its spherical subalgebra U+X) and Cherednik’s double affine Hecke algebras of type GLn, for all n. This allows us to obtain a geometric construction of the Macdonald polynomials Pλ(q,t−1) in terms of certain functions (Eisenstein series) on the moduli space of semistable vector bundles on the elliptic curve X.
We give a construction of the moduli space of stable maps to the classifying stack Bμr of a cyclic group by a sequence of rth root constructions on . We prove a closed formula for the total Chern class of μr-eigenspaces of the Hodge bundle, and thus of the obstruction bundle of the genus-zero Gromov–Witten theory of stacks of the form [ℂN/μr]. We deduce linear recursions for genus-zero Gromov–Witten invariants.
Let E/k be a function field over an infinite field of constants. Assume that E/k(x) is a separable extension of degree greater than one such that there exists a place of degree one of k(x) ramified in E. Let K/k be a function field. We prove that there exist infinitely many nonisomorphic separable extensions L/K such that [L:K]=[E:k(x)] and AutkL=AutKL≅Autk(x)E.
We realize the multiplihedron geometrically as the moduli space of stable quilted disks. This generalizes the geometric realization of the associahedron as the moduli space of stable disks. We show that this moduli space is the non-negative real part of a complex moduli space of stable scaled marked curves.
Let k be a field of characteristic other than 2. There can be an obstruction to a principally polarized abelian threefold (A,a) over k, which is a Jacobian over , being a Jacobian over k; this can be computed in terms of the rationality of the square root of the value of a certain Siegel modular form. We show how to do this explicitly for principally polarized abelian threefolds which are the third power of an elliptic curve with complex multiplication. We use our numerical results to prove or refute the existence of some optimal curves of genus 3.
A foliation on a non-singular projective variety is algebraically integrable if all leaves are algebraic subvarieties. A non-singular hypersurface X in a non-singular projective variety M equipped with a symplectic form has a naturally defined foliation, called the characteristic foliation on X. We show that if X is of general type and dim M≥4, then the characteristic foliation on X cannot be algebraically integrable. This is a consequence of a more general result on Iitaka dimensions of certain invertible sheaves associated with algebraically integrable foliations by curves. The latter is proved using the positivity of direct image sheaves associated to families of curves.
We introduce in this paper a hypercohomology version of the resonance varieties and obtain some relations to the characteristic varieties of rank one local systems on a smooth quasi-projective complex variety M. A logarithmic resonance variety is also considered and, as an application, we determine the first characteristic variety of the configuration space of n distinct labeled points on an elliptic curve. Finally, for a logarithmic 1-form α on M we investigate the relation between the resonance degree of α and the codimension of the zero set of α on a good compactification of M. This question was inspired by the recent work by Cohen, Denham, Falk and Varchenko.
If C is a curve of genus 2 defined over a field k and J is its Jacobian, then we can associate a hypersurface K in ℙ3 to J, called the Kummer surface of J. Flynn has made this construction explicit in the case when the characteristic of k is not 2 and C is given by a simplified equation. He has also given explicit versions of several maps defined on the Kummer surface and shown how to perform arithmetic on J using these maps. In this paper we generalize these results to the case of arbitrary characteristic.
The moduli space of n-pointed stable curves of genus g is stratified by the topological type of the curves being parameterized: the closure of the locus of curves with k nodes has codimension k. The one-dimensional components of this stratification are smooth rational curves called F-curves. These are believed to determine all ample divisors. F-conjecture
A divisor onis ample if and only if it positively intersects theF-curves.
In this paper, proving the F-conjecture on is reduced to showing that certain divisors on for N⩽g+n are equivalent to the sum of the canonical divisor plus an effective divisor supported on the boundary. Numerical criteria and an algorithm are given to check whether a divisor is ample. By using a computer program called the Nef Wizard, written by Daniel Krashen, one can verify the conjecture for low genus. This is done on for g⩽24, more than doubling the number of cases for which the conjecture is known to hold and showing that it is true for the first genera such that is known to be of general type.
We study behaviours of the ‘equianharmonic’ parameter of the Grothendieck–Teichmüller group introduced by Lochak and Schneps. Using geometric construction of a certain one-parameter family of quartics, we realize the Galois action on the fundamental group of a punctured Mordell elliptic curve in the standard Galois action on a specific subgroup of the braid group . A consequence is to represent a matrix specialization of the ‘equianharmonic’ parameter in terms of special values of the adelic beta function introduced and studied by Anderson and Ihara.
We introduce the τ-function of a difference rational connection (d-connection) and its isomonodromy transformations. We show that in a continuous limit ourτ-function agrees with the Jimbo–Miwa–Ueno τ-function. We compute the τ-function for the isomonodromy transformations leading to difference Painlevé V and difference Painlevé VI equations. We prove that the gap probability for a wide class of discrete random matrix type models can be viewed as the τ-function for an associated d-connection.
We show that under a suitable transversality condition, the intersection of two rational subtori in an algebraic torus (ℂ*)n is a finite group which can be determined using the torsion part of some associated lattice. We also give applications to the study of characteristic varieties of smooth complex algebraic varieties. As an example we discuss A. Suciu’s line arrangement, the so-called deleted B3-arrangement.