Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:19:40.271Z Has data issue: false hasContentIssue false

FINITE GROUPS AS GALOIS GROUPS OF FUNCTION FIELDS WITH INFINITE FIELD OF CONSTANTS

Published online by Cambridge University Press:  14 May 2010

C. ÁLVAREZ-GARCÍA
Affiliation:
Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del I.P.N., Av. Instituto Politécnico Nacional No. 2508, Col San Pedro Zacatenco, C.P. 07360, México D. F., México Departamento de Matemáticas, Universidad Autónoma Metropolitana Iztapalapa, México (email: calvarez@ctrl.cinvestav.mx)
G. VILLA-SALVADOR*
Affiliation:
Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del I.P.N., Av. Instituto Politécnico Nacional No. 2508, Col San Pedro Zacatenco, C.P. 07360, México D. F., México Departamento de Matemáticas, Universidad Autónoma Metropolitana Iztapalapa, México (email: gvilla@ctrl.cinvestav.mx)
*
For correspondence; e-mail: gvilla@ctrl.cinvestav.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let E/k be a function field over an infinite field of constants. Assume that E/k(x) is a separable extension of degree greater than one such that there exists a place of degree one of k(x) ramified in E. Let K/k be a function field. We prove that there exist infinitely many nonisomorphic separable extensions L/K such that [L:K]=[E:k(x)] and AutkL=AutKLAutk(x)E.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Álvarez-García, C. and Villa-Salvador, G., ‘Groups of automorphisms of global function fields’, Int. J. Algebra 2 (2008), 6578.Google Scholar
[2]Deuring, M., Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in Mathematics, 314 (Springer, Berlin, 1973).CrossRefGoogle Scholar
[3]D’Mello, J. and Madan, M., ‘Algebraic function fields with solvable automorphism group in characteristic p’, Comm. Algebra 11 (1983), 11871236.CrossRefGoogle Scholar
[4]Greenberg, L., ‘Maximal groups and signatures’, in: Discontinuous Groups and Riemann Surfaces (Proc. Conf. Univ. Maryland, College Park, MD, 1973) pp. 207–226. Ann. of Math. Studies, No. 79 (Princeton University Press, Princeton, NJ, 1974).CrossRefGoogle Scholar
[5]Madan, M. and Rosen, M., ‘The automorphism group of a function field’, Proc. Amer. Math. Soc. 115 (1992), 923929.CrossRefGoogle Scholar
[6]Madden, D. J. and Valentini, R. C., ‘The group of automorphisms of algebraic function fields’, J. Reine Angew. Math. 343 (1983), 162168.Google Scholar
[7]Rzedowski-Calderón, M. and Villa-Salvador, G., ‘Automorphisms of congruence function fields’, Pacific J. Math. 150 (1991), 167178.CrossRefGoogle Scholar
[8]Stichtenoth, H., ‘Zur Realisierbarkeit endlicher Gruppen als Automorphismengruppen algebraischer Funktionenkörper’, Math. Z. 187 (1984), 221225.CrossRefGoogle Scholar
[9]Stichtenoth, H., Algebraic Function Fields and Codes, Universitext (Springer, Berlin, 1993).Google Scholar