To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents an experimental application of reactive control to jet installation noise based on destructive interference. The work is motivated by the success of previous studies in applying this control approach to mixing layers (Sasaki et al. Theor. 2018b Comput.FluidDyn. 32, 765–788), boundary layers (Brito et al. 2021 Exp.Fluids62, 1–13; Audiffred et al. 2023 Phys.Rev.Fluids8, 073902), flow over a backward-facing step (Martini et al. 2022 J.FluidMech. 937, A19) and, more recently, to turbulent jets (Maia et al. 2021 Phys.Rev.Fluids6, 123901; Maia et al. 2022 Phys. Rev. Fluids7, 033903; Audiffred et al. 2024b J. FluidMech. 994, A15). We exploit the fact that jet–surface interaction noise is underpinned by wavepackets that can be modelled in a linear framework and develop a linear control strategy where piezoelectric actuators situated at the edge of a scattering surface are driven in real time by sensor measurements in the near field of the jet, the objective being to reduce noise radiated in the acoustic field. The control mechanism involves imposition of an anti-dipole at the trailing edge to cancel the scattering dipole that arises due to an incident wavepacket perturbation. We explore two different control strategies: (i) the inverse feed-forward approach, where causality is imposed by truncating the control kernel, and (ii) the Wiener–Hopf approach, where causality is optimally enforced in building the control kernel. We show that the Wiener–Hopf approach has better performance than that obtained using the truncated inverse feed-forward kernel. We also explore different positions of the near-field sensors and show that control performance is better for sensors installed for streamwise positions downstream in the jet plume, where the signature of hydrodynamic wavepacket is better captured by the sensors. Broadband noise reductions of up to 50 % are achieved.
Accurate estimation of finger joint stiffness is important in assessing the hand condition of stroke patients and developing effective rehabilitation plans. Recent technological advances have enabled the efficient performance of hand therapy and assessment by estimating joint stiffness using soft actuators. While joint modular soft actuators have enabled cost-effective and personalized stiffness estimation, existing approaches face limitations. A corrective approach based on an analytical model suffers from actuator–finger and inter-actuator interactions, particularly in multi-joint systems. In contrast, a data-driven approach struggles with generalization due to limited availability of labeled data. In this study, we proposed a method for energy conservation-based online tuning of the analytical model using an artificial neural network (ANN) to address these challenges. By analyzing each term in the analytical model, we identified causes of estimation error and introduced correction parameters that satisfy energy balance within the actuator–finger complex. The ANN enhances the analytical model’s adaptability to measurement data, thereby improving estimation accuracy. The results show that our method outperforms the conventional corrective approach and exhibits better generalization potential than the purely data-driven approach. In addition, the method also proved effective in estimating stiffness in human subjects, where errors tend to be larger than in prototype experiments. This study is an essential step toward the realization of personalized rehabilitation.
The crystal structure of quizartinib hydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Quizartinib hydrate crystallizes in space group P-1 (#2) with a = 13.9133(9), b = 17.877(3), c = 19.8459(30) Å, α = 115.080(5), β = 93.768(5), γ = 100.831(5)°, V = 4,332.1(6) Å3, and Z = 6 at 298 K. In the complex crystal structure, the molecules are generally oriented parallel to the (110) plane. Two of the independent molecules are linked into dimers by N–H···O or N–H···N hydrogen bonds. Each molecule exhibits a unique pattern of C–H···O, C–H···N, or C–H···S hydrogen bonds. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
This work presents detailed 3D modelling and simulation of the mechanical effects induced by lightning strikes in protected carbon fibre-reinforced polymer laminates. Firstly, physically based models that represent the mechanical overpressure that results from a lightning strike are revisited. In particular, this paper compares the implementation of an analytical strong shock wave approximation with the solutions obtained from computational fluid dynamics (CFD), considering different equations of state, to represent the supersonic expansion of the hot plasma channel when simulating the mechanical damage induced by lightning strikes. The assessment of the pressure profiles, the numerical predictions of the displacement and velocity fields and the analysis of the predicted damage maps show that, for two lightning protection layers, the effects of the supersonic plasma expansion loads obtained from the strong shock wave approximation compare reasonably well with those obtained from CFD, independently of the equation of state solved numerically. Subsequently, the predictions of the 3D modelling strategy of the mechanical response of composite laminates subjected to lightning strike employing the strong shock wave approximation are compared with mechanical deformation measurements obtained from lab-scale lightning test results. Accurate deflection and out-of-plane velocity fields are predicted, validating the 3D modelling strategy. Moreover, the predicted damage maps correlate well with the (bulk) damage identified by C-scan (considering only the damaged area below the second ply).
The Myoshirt, an active exosuit, provides gravity compensation for the shoulders. This study evaluated the impact of the Myoshirt on range of motion (ROM), endurance, and activities of daily living (ADLs) performance through tests involving nine participants with varying levels of arm impairments and diverse pathologies. Optical motion capture was used to quantify ROM of the shoulder and elbow joints during isolated movements and functional tasks. Endurance was quantified through a timed isometric shoulder flexion task, and a battery of ADL tasks was used to measure the perceived support of the exosuit, along with changes in movement quality. Feedback and usability insights were gathered with surveys. The Myoshirt did not significantly improve ROM during isolated movements (shoulder flexion, shoulder abduction, and elbow flexion/extension), but during the reaching phase of a functional drinking task elbow extension increased significantly by 13.5% (t = 7.52, p = .002). Participants could also keep their arms elevated 78.7% longer (t = 1.942, p = .047). Patients also reported less perceived difficulty with ADLs while using the device, and a therapist reported improved execution quality. Participants who self-reported severe impairment levels tended to derive greater benefits compared to those with milder impairments. These findings highlight the potential of the Myoshirt as an assistive device, particularly for individuals with severe impairments, while emphasizing the need for further refinement.
Several million years of natural evolution have endowed marine animals with high flexibility and mobility. A key factor in this achievement is their ability to modulate stiffness during swimming. However, an unresolved puzzle remains regarding how muscles modulate stiffness, and the implications of this capability for achieving high swimming efficiency. Inspired by this, we proposed a self-propulsor model that employs a parabolic stiffness-tuning strategy, emulating the muscle tensioning observed in biological counterparts. Furthermore, efforts have been directed towards developing the nonlinear vortex sheet method, specifically designed to address nonlinear fluid–structure coupling problems. This work aims to analyse how and why nonlinear tunable stiffness influences swimming performance. Numerical results demonstrate that swimmers with nonlinear tunable stiffness can double their speed and efficiency across nearly the entire frequency range. Additionally, our findings reveal that high-efficiency biomimetic propulsion originates from snap-through instability, which facilitates the emergence of quasi-quadrilateral swimming patterns and enhances vortex strength. Moreover, this study examines the influence of nonlinear stiffness on swimming performance, providing valuable insights into the optimisation of next-generation, high-performance, fish-inspired robotic systems.
We study the mixing of passive scalars in a velocity field generated by selected-eddy simulations (SES), an approach where only a randomly selected subset of spectrally distributed modes obey Navier–Stokes dynamics. The Taylor Reynolds number varies from 140 to 400 and the Schmidt number ($Sc$) varies from 0.25 to 1. By comparing the results with direct numerical simulations (DNS), we show that most statistics are captured with as low as $0.5\,\%$ of Navier–Stokes modes in the velocity field. This includes scalar gradients, spectra, structure functions and their departures from classical scaling due to intermittency. The results suggest that all modes need not be resolved to accurately capture turbulent mixing for $Sc\leqslant 1$ scalars.
Understanding how bubbles on a substrate respond to ultrasound is crucial for applications from industrial cleaning to biomedical treatments. Under ultrasonic excitation, bubbles can undergo shape deformations due to Faraday instability, periodically producing high-speed jets that may cause damage. While recent studies have begun to elucidate this behaviour for free bubbles, the dynamics of wall-attached bubbles is still largely unexplored. In particular, the selection and evolution of non-spherical modes in these bounded systems have not previously been resolved in three dimensions, and the resulting jetting dynamics has yet to be compared with that observed in free bubbles. In this study, we investigate individual micrometric air bubbles in contact with a rigid substrate and subjected to ultrasound. We introduce a novel dual-view imaging technique that combines top-view bright-field microscopy with side-view phase-contrast X-ray imaging, enabling visualisation of bubble shape evolution from two orthogonal perspectives. This set-up reveals the progression of bubble shape through four distinct dynamic regimes: purely spherical oscillations, onset of harmonic axisymmetric meniscus waves, emergence of half-harmonic axisymmetric Faraday waves and the superposition of half-harmonic sectoral Faraday waves. This stepwise evolution contrasts with the behaviour of free bubbles, which exhibit their ultimate Faraday wave pattern immediately upon instability onset. For the substrate chosen, the resulting shape-mode spectrum appears to be degenerate and exhibits a continuous range of shape mode degrees, in line with our theoretical predictions derived from kinematic arguments. While free bubbles also display a degenerate spectrum, their shape mode degrees remain discrete, constrained by the bubble spherical periodicity. Experimentally measured ultrasound pressure thresholds for the onset of Faraday instability agree well with classical interface stability theory, modified to incorporate the effects of a rigid boundary. Complementary three-dimensional boundary element simulations of bubble shape evolution align closely with experimental observations, validating this method’s predictive capability. Finally, we determine the acceleration threshold at which shape mode lobes initiate cyclic jetting. Unlike free bubbles, jetting in wall-attached bubbles consistently emerges from the side not restricted by the substrate.
We focus on the wake of a cylinder placed in uniform flow and forced to rotate periodically at subcritical Reynolds numbers, i.e. for Reynolds numbers smaller than 47 calculated based on the incoming flow velocity and the cylinder diameter, where vortices are not shed in the wake of a fixed cylinder. We show that in the near wake, the imposed periodic rotation causes the Föppl vortices (the symmetric steady vortices that are formed right behind a fixed cylinder within the Reynolds number range of $5\lt {Re}\lt 47$) to appear only momentarily during each rotation cycle until they disappear at higher rotation rates. In the far wake, vortices can be induced for certain values of rotation rate, $\alpha$, and rotation frequency, $f$. The shedding of these vortices in the wake results in a periodic lift force that acts on the cylinder. We have defined a new parameter $\omega /(f\alpha )\equiv 1/F$, where $\omega$ is the angular velocity of the cylinder, which is significant in describing the system. For any values of angular velocity and the frequency of change in the rotation direction, the wake pattern remains the same if the value of $1/F$ stays constant. Subsequently, the fluctuating lift coefficient and the average drag coefficient peak at the same value of $1/F$ for any value of $\omega /f\equiv \alpha /F$. The Reynolds number for the onset of shedding decreases with increasing rotation rate at a constant $\alpha /F$. We have observed shedding at Reynolds numbers as low as ${Re}=1$ for higher rotation rates.
Axisymmetric turbulent boundary layers are of great significance in industry and the fluid dynamics community. In this paper, direct numerical simulations of an axially developing axisymmetric turbulent boundary layer along a slender cylinder are performed. Periodical suction and blowing perturbation are used to trigger the transition from laminar inflow to turbulent flow downstream, resulting in the boundary layer thickness varying from 7 to 13 times the cylinder radius, and the friction Reynolds number varying from 300 to 510. Turbulence statistics including wall friction coefficient, mean velocity profile and Reynolds stresses are obtained. The turbulence intensities are weakened compared with the planar turbulent layer, and the inter-component energy transfer is also inhibited. A curvature-weighted transformation is proposed, and the transformed Reynolds stresses and mean velocity deficit collapse well with the planar case in the near-wall region. The velocity streaks and vortical structures are explored. The wall-normal variation of the mean spanwise spacing of low-speed streaks is greatly influenced by the cylindrical geometry. Quasi-streamwise vortices dominate the near-wall region, and the arch vortices are prevalent in the outer region. The prograde hairpin vortices can be commonly observed.
A rotating detonation combustor exhibits corotating $N$-wave modes with $N$ detonation waves propagating in the same direction. These modes and their responses to ignition conditions and disturbances were studied using a surrogate model. Through numerical continuation, a mode curve (MC) is obtained, depicting the relationship between the wave speed of the one-wave mode and a defined baseline of the combustor circumference ($L_{{base}}$) under fixed equation parameters, limited by deflagration and flow choking. The modes’ existence is confirmed by the equivalence between a one-wave mode within a combustor with circumference $L_{{base}}$/$N$ on the MC and an $N$-wave mode in an $L_{{base}}$ combustor. The stability, measured by the real part of the eigenvalue from linear stability analysis (LSA), revealed the dynamic properties. When multiple stable modes exist under the same parameters, ignition conditions with a spatial period of $L_{{base}}$/$N$ are more likely to form $N$-wave modes. An unstable evolution in formed modes, occurs in the dynamics from stable to unstable modes through saddle-node bifurcation and Hopf bifurcation induced by parameter perturbations and from unstable to stable modes induced by state disturbances. Eigenmodes from LSA reveal mechanisms of the unstable evolution, including the effect of secondary deflagration in the unstable one-wave mode and competitive interaction between detonation waves in the unstable multiwave mode, crucial for the combustor to mode transition.
Uniform arrays of particles tend to cluster as they sediment in viscous fluids. Shape anisotropy of the particles enriches this dynamics by modifying the mode structure and the resulting instabilities of the array. A one-dimensional lattice of sedimenting spheroids in the Stokesian regime displays either an exponential or an algebraic rate of clustering depending on the initial lattice spacing (Chajwa et al. 2020 Phys.Rev.X vol. 10, pp. 041016). This is caused by an interplay between the Crowley mechanism, which promotes clumping, and a shape-induced drift mechanism, which subdues it. We theoretically and experimentally investigate the sedimentation dynamics of one-dimensional lattices of oblate spheroids or discs and show a stark difference in clustering behaviour: the Crowley mechanism results in clumps comprising several spheroids, whereas the drift mechanism results in pairs of spheroids whose asymptotic behaviour is determined by pair–hydrodynamic interactions. We find that a Stokeslet, or point-particle, approximation is insufficient to accurately describe the instability and that the corrections provided by the first reflection are necessary for obtaining some crucial dynamical features. As opposed to a sharp boundary between exponential growth and neutral eigenvalues under the Stokeslet approximation, the first-reflection correction leads to exponential growth for all initial perturbations, but far more rapid algebraic growth than exponential growth at large dimensionless lattice spacing $\tilde {d}$. For discs with aspect ratio $0.125$, corresponding to the experimental value, the instability growth rate is found to decrease with increasing lattice spacing $\tilde {d}$, approximately as $\tilde {d}^{ -4.5}$, which is faster than the $\tilde {d}^{-2}$ for spheres (Crowley 1971 J.FluidMech. vol. 45, pp. 151–159). It is shown that the first-reflection correction has a stabilising effect for small lattice spacing and a destabilising effect for large lattice spacing. Sedimenting pairs predominantly come together to form an inverted ‘T’, or ‘$\perp$’, which our theory accounts for through an analysis that builds on Koch & Shaqfeh (1989 J.FluidMech. vol. 209, pp. 521–542). This structure remains stable for a significant amount of time.
Cable-driven exoskeletons have recently shown great promise in the rehabilitation of stroke survivors. Numerical modeling/simulation provides a cost- and time-effective approach to fine-tuning design parameters of the exoskeletons, hence reducing the need for expensive and time-consuming experimental trials. This study investigated using a cable-driven lower limb rehabilitation exoskeleton (C-LREX) to correct stroke-impaired gait and track reference healthy trajectories. The impact of different levels of impairment and subject anthropometry variation on the model’s performance was studied. The C-LREX model was successful in assisting the impaired limb to track the reference trajectory in all impaired gait patterns, except for higher impairment levels (>20° range of motion deviation at the hip joint). Subject anthropometry variation did not affect trajectory tracking when the cable routing was scaled to fit the user’s anthropometry. This study confirmed that the C-LREX model could simulate various impaired lower limb gait patterns in the sagittal plane and determine the cable tension requirements needed to correct the impairment. Future work includes expanding the framework to incorporate frontal plane motion and to validate C-LREX performance in assisting biplanar impaired motion.
Suspensions of microswimmers exhibit distinct characteristics as compared with those of passive particles because the internal particles are in a state of spontaneous motion. Although there have been many studies of microswimmer suspensions, not many have carefully considered the hydrodynamics. Hydrodynamics becomes particularly important when discussing non-dilute suspensions, because the lubrication flow generates a large force when the swimmers are in close proximity. This paper focuses on hydrodynamics and describes the transport phenomena of microswimmer suspensions, such as migration, collective motion, diffusion and rheology. The paper is structured to progressively scale up from a single microswimmer to collective motion to a macroscale continuum. At each scale, the discussion also evolves from dilute to concentrated suspensions. We first introduce natural swimming microorganisms, artificial microswimmers and mathematical models, as well as the fundamentals of fluid mechanics relevant to microswimmers. We then describe the migration of microswimmers by taxis, where microswimmers respond passively or actively to their hydrodynamic environment. Microswimmers exhibit collective motions, the mechanism of which is discussed in terms of hydrodynamics. The spreading of microswimmers is often diffusive, and the diffusion coefficient is much larger than for passive particles. Similarly, the mass diffusivity in microswimmer suspensions is higher due to their swimming activity. We explain these macroscopic diffusion properties. The viscosity of microswimmer suspensions can be higher or lower depending on the characteristics and orientation of the microswimmers. We describe the rheological properties of microswimmer suspensions in shear flow and Poiseuille flow. Finally, current issues and future research perspectives are discussed.
An experimental study was conducted to investigate the impingement of a vortex ring onto a porous wall by laser-induced fluorescence and particle image velocimetry. The effects of different Reynolds numbers (${{Re}}_{\it\Gamma } = 700$ and $1800$) and hole diameters ($d_{h}^{*} = 0.067$, $0.10$, $0.133$ and $0.20$) on the flow characteristics were examined at a constant porosity ($\phi = 0.75$). To characterise fluid transport through a porous wall, we recall the model proposed by Naaktgeboren, Krueger & Lage (2012, J. Fluid Mech., vol. 707, 260–286), which shows rough agreement with the experimental results due to the absence of vortex ring characteristics. This highlights the need for a more accurate model to correlate the losses in kinetic energy ($\Delta E^{*}$) and impulse ($\Delta I^{*}$) resulting from the vortex ring–porous wall interaction. Starting from Lamb’s vortex ring model and considering the flow transition from the upstream laminar state to the downstream turbulent state caused by the porous wall disturbance, a new model is derived theoretically: $\Delta E^{*} = 1 - k(1 - \Delta I^{*})^2$, where $k$ is a parameter dependent on the dimensionless core radius $\varepsilon$, with $k = 1$ when no flow state change occurs. This new model effectively correlates $\Delta E^{*}$ and $\Delta I^{*}$ across more than 70 cases from current and previous experiments, capturing the dominant flow physics of the vortex ring–porous wall interaction.
Submerged flexible aquatic vegetation exists widely in nature and achieves multiple functions mainly through fluid–structure interactions (FSIs). In this paper, the evolution of large-scale vortices above the vegetation canopy and its effect on flow and vegetation dynamics in a two-dimensional (2-D) laminar flow are investigated using numerical simulations under different bending rigidity $\gamma$ and gap distance d. According to the variation of large-scale vortex size and intensity, the evolution process is divided into four distinct zones in the streamwise direction, namely the ‘developing’ zone, ‘transition’ zone, ‘dissipation’ zone and ‘interaction’ zone, and different evolution sequences are further classified. In the ‘developing’ zone, the size and intensity of the large-scale vortex gradually increase along the array, while they decrease in the ‘dissipation’ zone. The supplement of vegetation oscillating vortices to large-scale vortices is the key to the enhancement of the latter. The most obvious dissipation of large-scale vortices occurs in the ‘transition’ zone, where the position of the large-scale vortex is significantly uplifted. The effects of $\gamma$ and d on the evolution of the large-scale vortex are discussed. In general, the features of vegetation swaying vary synchronously with those of large-scale vortices. The flow above the canopy is dominated by large-scale vortices, and the development of flow characteristics such as time-averaged velocity profile and Reynolds stress are closely related to the evolution of large-scale vortices. The flow inside the canopy, however, is mainly affected by the vortex shed by the vegetation oscillation, which leads to the emergence of negative time-averaged velocity and negative Reynolds stress.
We investigate flow-induced choking in soft Hele-Shaw cells comprising a fluid-filled gap in between a rigid plate and a confined block of elastomer. Fluid injected from the centre of the circular rigid plate flows radially outwards, causing the elastomeric block to deform, before exiting through the cell rim. The pressure in the fluid deforms the elastomer, increasing the size of the gap near the inlet, and decreasing the gap near the cell rim, because of volume conservation of the solid. At a critical injection flow rate, the magnitude of the deformation becomes large enough that the flow is occluded entirely at the rim. Here, we explore the influence of elastomer geometry on flow-induced choking and, in particular, the case of a thick block with radius smaller than its depth. We show that choking can still occur with small-aspect-ratio elastomers, even though the confining influence of the back wall that bounds the elastomer becomes negligible; in this case, the deformation length scale is set by the radial size of the cell rather than the depth of the block. Additionally, we reveal a distinction between flow-induced choking in flow-rate-controlled flows and flow-rate-limiting behaviour in pressure-controlled flows.
Reduction in mobility due to gait impairment is a critical consequence of diseases affecting the neuromusculoskeletal system, making detecting anomalies in a person’s gait a key area of interest. This challenge is compounded by within-subject and between-subject variability, further emphasized in individuals with multiple sclerosis (MS), where gait patterns exhibit significant heterogeneity. This study introduces a novel perspective on modeling kinematic gait patterns, recognizing the inherent hierarchical structure of the data, which is gathered from contralateral limbs, individuals, and groups of individuals comprising a population, using wearable sensors. Rather than summarizing features, this approach models the entire gait cycle functionally, including its variation. A Hierarchical Variational Sparse Heteroscedastic Gaussian Process was used to model the shank angular velocity across 28 MS and 28 healthy individuals. The utility of this methodology was underscored by its granular analysis capabilities. This facilitated a range of quantifiable comparisons, spanning from group-level assessments to patient-specific analyses, addressing the complexity of pathological gait patterns and offering a robust methodology for kinematic pattern characterization for large datasets. The group-level analysis highlighted notable differences during the swing phase and towards the end of the stance phase, aligning with previously established literature findings. Moreover, the study identified the heteroscedastic gait pattern variability as a distinguishing feature of MS gait. Additionally, a novel approach for lower limb gait asymmetry quantification has been proposed. The use of probabilistic hierarchical modeling facilitated a better understanding of the impaired gait pattern, while also expressing potential for extrapolation to other pathological conditions affecting gait.